【題目】日,小劉從各個(gè)渠道融資萬(wàn)元,在某大學(xué)投資一個(gè)咖啡店,日正式開(kāi)業(yè),已知開(kāi)業(yè)第一年運(yùn)營(yíng)成本為萬(wàn)元,由于工人工資不斷增加及設(shè)備維修等,以后每年成本增加萬(wàn)元,若每年的銷(xiāo)售額為萬(wàn)元,用數(shù)列表示前年的純收入.(注:純收入年的總收入年的總支出投資額)

1)試求年平均利潤(rùn)最大時(shí)的年份(年份取正整數(shù))并求出最大值.

2)若前年的收入達(dá)到最大值時(shí),小劉計(jì)劃用前年總收入的對(duì)咖啡店進(jìn)行重新裝修,請(qǐng)問(wèn):小劉最早從哪一年對(duì)咖啡店進(jìn)行重新裝修(年份取整數(shù))?并求小劉計(jì)劃裝修的費(fèi)用.

【答案】1)到年或年,年平均利潤(rùn)最大,最大值為萬(wàn)元;(2)小劉最早從年對(duì)咖啡店進(jìn)行重新裝修,計(jì)劃裝修費(fèi)用為萬(wàn)元.

【解析】

1)每年的運(yùn)營(yíng)成本構(gòu)成一個(gè)等差數(shù)列,每年的銷(xiāo)售額是一個(gè)常數(shù)列,根據(jù)題意,列出等式年平均利潤(rùn)為,之后應(yīng)用基本不等式,結(jié)合求得結(jié)果;

2)由(1)知,利用二次函數(shù)的性質(zhì)以及的條件,得到當(dāng)時(shí),取得最大值,進(jìn)而得到結(jié)果.

1)由條件可知,每年的運(yùn)營(yíng)成本構(gòu)成首項(xiàng)為,公差為的等差數(shù)列,

,

則年平均利潤(rùn)為,

,當(dāng)且僅當(dāng),即時(shí)取等號(hào).

,且時(shí),

此時(shí),取最大值

年或年,年平均利潤(rùn)最大,最大值為萬(wàn)元;

2)由(1)可得,

當(dāng)時(shí),取得最大值

(萬(wàn)元)

故小劉最早從年對(duì)咖啡店進(jìn)行重新裝修,計(jì)劃裝修費(fèi)用為萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,,.

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高二全體師生今秋開(kāi)學(xué)前在新校區(qū)體驗(yàn)周活動(dòng)中有優(yōu)異的表現(xiàn),學(xué)校擬對(duì)高二年級(jí)進(jìn)行表彰;

1)若要表彰3個(gè)優(yōu)秀班級(jí),規(guī)定從6個(gè)文科班中選一個(gè),14個(gè)理科班中選兩個(gè)班級(jí),有多少種不同的選法?

2)年級(jí)組擬在選出的三個(gè)班級(jí)中再選5名學(xué)生,每班至少1名,最多2名,則不同的分配方案有多少種?

3)選中的這5名學(xué)生和三位年級(jí)負(fù)責(zé)人徐主任,陳主任,付主任排成一排合影留念,規(guī)定這3位老師不排兩端,且老師順序固定不變,那么不同的站法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線(xiàn)的極坐標(biāo)方程為曲線(xiàn)的參數(shù)方程是為參數(shù)).

(1)求直線(xiàn)和曲線(xiàn)的普通方程;

(2)設(shè)直線(xiàn)和曲線(xiàn)交于兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,分別為,的中點(diǎn),點(diǎn)在線(xiàn)段.

1)若的中點(diǎn),求證:平面平面;

2)求證:平面;

3)若,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,曲線(xiàn)C的參數(shù)方程是,(為參數(shù)).

(1)求直線(xiàn)被曲線(xiàn)C截得的弦長(zhǎng);

(2)從極點(diǎn)作曲線(xiàn)C的弦,求各弦中點(diǎn)軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,已知平面QBC與直線(xiàn)PA均垂直于所在平面,且PA=AB=AC

)求證:PA∥平面QBC;

)若,求二面角Q-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)a時(shí),試判斷函數(shù)f(x)的單調(diào)性;

2)設(shè)g(x),若g(x)有唯一零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次田徑比賽中,35名運(yùn)動(dòng)員的成績(jī)(單位:分鐘)的莖葉圖如圖所示。

若將運(yùn)動(dòng)員按成績(jī)由好到差編為135號(hào),再用系統(tǒng)抽樣方法從中抽取5人,則其中成績(jī)?cè)趨^(qū)間上的運(yùn)動(dòng)員人數(shù)為

A.6B.5C.4D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案