【題目】高二全體師生今秋開(kāi)學(xué)前在新校區(qū)體驗(yàn)周活動(dòng)中有優(yōu)異的表現(xiàn),學(xué)校擬對(duì)高二年級(jí)進(jìn)行表彰;

1)若要表彰3個(gè)優(yōu)秀班級(jí),規(guī)定從6個(gè)文科班中選一個(gè),14個(gè)理科班中選兩個(gè)班級(jí),有多少種不同的選法?

2)年級(jí)組擬在選出的三個(gè)班級(jí)中再選5名學(xué)生,每班至少1名,最多2名,則不同的分配方案有多少種?

3)選中的這5名學(xué)生和三位年級(jí)負(fù)責(zé)人徐主任,陳主任,付主任排成一排合影留念,規(guī)定這3位老師不排兩端,且老師順序固定不變,那么不同的站法有多少種?

【答案】1種;(2種;(3

【解析】

1)根據(jù)分步計(jì)算原理即可求出答案.

2)根據(jù)題意可得,5名學(xué)生分成三組,一組一人,另兩組都是2人,計(jì)算其分組的方法種數(shù),進(jìn)而將三個(gè)組分到3個(gè)班,即進(jìn)行全排列,計(jì)算可得答案.

3)先計(jì)算出2名學(xué)生排在兩端,剩下的學(xué)生和老師全排的種數(shù),再除以老師的順序數(shù),問(wèn)題得以解決.

1)要表彰3個(gè)優(yōu)秀班級(jí),規(guī)定從6個(gè)文科班中選一個(gè),14個(gè)理科班中選兩個(gè)班級(jí),有種;

25名學(xué)生分成三組,一組1人,另兩組都是2人,有種方法,再將3組分到3個(gè)班,共有種不同的分配方案;

3)先選2名學(xué)生排在兩端,剩下的學(xué)生和老師全排有種,因?yàn)槔蠋煹捻樞蛴?/span>種,故有.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:1(a>b>0)的右頂點(diǎn)為A(2,0),離心率為.

1)求橢圓C的方程;

2)設(shè)過(guò)點(diǎn)P(0,﹣2)的直線l與橢圓C相交于M,N兩點(diǎn),當(dāng)△OMN的面積最大時(shí)(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知曲線和曲線,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.

(1)求曲線和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)是曲線上一動(dòng)點(diǎn),過(guò)點(diǎn)作線段的垂線交曲線于點(diǎn),求線段長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖幾何體是圓錐的一部分,它是RtABC(及其內(nèi)部)以一條直角邊AB所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)150°得到的,ABBC2P是弧上一點(diǎn),且EBAP.

1)求∠CBP的大。

2)若QAE的中點(diǎn),D為弧的中點(diǎn),求二面角QBDP的余弦值;

3)直線AC上是否存在一點(diǎn)M,使得B、DM、Q四點(diǎn)共面?若存在,請(qǐng)說(shuō)明點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校開(kāi)展的高二學(xué)工學(xué)農(nóng)某天的活動(dòng)安排中,有采茶,摘櫻桃,摘草莓,鋤草,栽樹(shù),喂奶牛共六項(xiàng)活動(dòng)可供選擇,每個(gè)班上午,下午各安排一項(xiàng)(不重復(fù)),且同一時(shí)間內(nèi)每項(xiàng)活動(dòng)都只允許一個(gè)班參加,則該天甲,乙兩個(gè)班的活動(dòng)安排方案的種數(shù)為:________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)的圖象在點(diǎn)處的切線的斜率為1,問(wèn):在什么范圍取值時(shí),對(duì)于任意的,函數(shù)在區(qū)間上總存在極值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】基于移動(dòng)網(wǎng)絡(luò)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國(guó),給人們帶來(lái)新的出行體驗(yàn),某共享單車運(yùn)營(yíng)公司的市場(chǎng)研究人員為了了解公司的經(jīng)營(yíng)狀況,對(duì)公司最近6個(gè)月的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代碼

1

2

3

4

5

6

11

13

16

15

20

21

(1)請(qǐng)用相關(guān)系數(shù)說(shuō)明能否用線性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請(qǐng)計(jì)算出關(guān)于的線性回歸方程,如果不能,請(qǐng)說(shuō)明理由;

(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購(gòu)一批單車擴(kuò)大市場(chǎng),從成本1000元/輛的型車和800元/輛的型車中選購(gòu)一種,兩款單車使用壽命頻數(shù)如下表:

車型 報(bào)廢年限

1年

2年

3年

4年

總計(jì)

10

30

40

20

100

15

40

35

10

100

經(jīng)測(cè)算,平均每輛單車每年能為公司帶來(lái)500元的收入,不考慮除采購(gòu)成本以外的其它成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤(rùn)的估計(jì)值為決策依據(jù),如果你是公司負(fù)責(zé)人,會(huì)選擇哪款車型?

參考數(shù)據(jù):,,,.

參考公式:相關(guān)系數(shù),,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】日,小劉從各個(gè)渠道融資萬(wàn)元,在某大學(xué)投資一個(gè)咖啡店,日正式開(kāi)業(yè),已知開(kāi)業(yè)第一年運(yùn)營(yíng)成本為萬(wàn)元,由于工人工資不斷增加及設(shè)備維修等,以后每年成本增加萬(wàn)元,若每年的銷售額為萬(wàn)元,用數(shù)列表示前年的純收入.(注:純收入年的總收入年的總支出投資額)

1)試求年平均利潤(rùn)最大時(shí)的年份(年份取正整數(shù))并求出最大值.

2)若前年的收入達(dá)到最大值時(shí),小劉計(jì)劃用前年總收入的對(duì)咖啡店進(jìn)行重新裝修,請(qǐng)問(wèn):小劉最早從哪一年對(duì)咖啡店進(jìn)行重新裝修(年份取整數(shù))?并求小劉計(jì)劃裝修的費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年暑期都會(huì)有大量中學(xué)生參加名校游學(xué),夏令營(yíng)等活動(dòng),某中學(xué)學(xué)生社團(tuán)將其今年的社會(huì)實(shí)踐主題定為“中學(xué)生暑期游學(xué)支出分析”,并在該市各個(gè)中學(xué)隨機(jī)抽取了共名中學(xué)生進(jìn)行問(wèn)卷調(diào)查,根據(jù)問(wèn)卷調(diào)查發(fā)現(xiàn)共名中學(xué)生參與了各類游學(xué)、夏令營(yíng)等活動(dòng),從中統(tǒng)計(jì)得到中學(xué)生暑期游學(xué)支出(單位:百元)頻率分布方圖如圖.

I)求實(shí)數(shù)的值;

(Ⅱ)在,三組中利用分層抽樣抽取人,并從抽取的人中隨機(jī)選出人,對(duì)其消費(fèi)情況進(jìn)行進(jìn)一步分析.

i)求每組恰好各被選出人的概率;

ii)設(shè)為選出的人中這一組的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案