等差數(shù)列{an}中
a11
a10
<-1,它的前n項和Sn有最大值,則當Sn取得最小正值時,n=( 。
A、10B、11C、19D、20
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由題意可得等差數(shù)列{an}遞增,結(jié)合題意可得a11>0>a10,進而可得a10+a11>0,由等差數(shù)列的性質(zhì)結(jié)合求和公式可得答案.
解答: 解:∵Sn有最小值,∴d>0,故可得a10<a11,
a11
a10
<-1,
∴S20=10(a1+a20)=10(a10+a11)>0,S19=19a10<0
∴S20為最小正值.
故選:C.
點評:本題為等差數(shù)列性質(zhì)的應(yīng)用,涉及項的最值問題,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如圖①②③④所示,它們都是由小正方形組成的圖案.現(xiàn)按同樣的排列規(guī)則進行排列,記第n個圖形包含的小正方形個數(shù)為f(n),則:
(Ⅰ)f(5)=
 
;
(Ⅱ)f(n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線kx-y-k+1=0(k∈R)過定點
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下面的表格中,如果每格填上一個數(shù)后,每一橫行成等差數(shù)列,每一縱列成等比數(shù)列,那么x+y+z的值為(  )
cos0   2    
sin
π
6
  tan
π
4
   
    x    
      y  
        z
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩種農(nóng)作物品種連續(xù)5季的單位面積平均產(chǎn)量如下(單位:t/hm2),根據(jù)這組數(shù)據(jù),下列說法正確的是( 。
品種 第1年 第2年 第3年 第4年 第5年
4.9 4.95 5.05 5 5.1
4.7 5.15 5.4 4.85 4.9
A、甲品種的樣本平均數(shù)大于乙品種的樣本平均數(shù)
B、甲品種的樣本平均數(shù)小于乙品種的樣本平均數(shù)
C、甲品種的樣本方差大于乙品種的樣本方差
D、甲品種的樣本方差小于乙品種的樣本方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于函數(shù)f(x)=x3-3x2+3(x∈R)的性質(zhì)敘述錯誤的是(  )
A、f(x)在區(qū)間(0,2)上單調(diào)遞減
B、f(x)在定義域上沒有最大值
C、f(x)在x=0處取最大值3
D、f(x)的圖象在點(2,-1)處的切線方程為y=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b=asinC,c=acosB,則△ABC的形狀為( 。
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=lnx,則f′(1)等于( 。
A、2B、eC、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx在點(
π
3
,
3
2
)處的切線方程是(  )
A、x+2y-
3
+
π
3
=0
B、x+2y+
3
-
π
3
=0
C、x-2y-
3
+
π
3
=0
D、x-2y+
3
-
π
3
=0

查看答案和解析>>

同步練習冊答案