已知P為拋物線y2=4x上動(dòng)點(diǎn),Q為圓(x-3)2+y2=1上動(dòng)點(diǎn),則距離|PQ|的最小值為
 
考點(diǎn):拋物線的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)圓心為O,則PQ=OP-OQ=OP-1,求出OP的最小值,即可得出結(jié)論.
解答: 解:設(shè)圓心為O,則PQ=OP-OQ=OP-1,O點(diǎn)坐標(biāo)(3,0),
設(shè)P坐標(biāo)(x,y),則OP=
(x-3)2+y2
=
(x-1)2+8
≥2
2
,
∵圓半徑為1,
∴PQ最小值為2
2
-1.
故答案為:2
2
-1.
點(diǎn)評(píng):本題考查拋物線上的動(dòng)點(diǎn)和圓上的動(dòng)點(diǎn)間的距離的最小值,解題時(shí)要認(rèn)真審題,注意兩點(diǎn)間距離公式和配方法的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

首項(xiàng)為1,公差不為0的等差數(shù)列{an}中,a3、a4、a6是一個(gè)等比數(shù)列的前三項(xiàng),則這個(gè)等比數(shù)列的第四項(xiàng)是( 。
A、8B、-8C、-6D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,直線y=x被橢圓C截得的線段長為
4
10
5

(Ⅰ)求橢圓C的方程;
(Ⅱ)過原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn)(A,B不是橢圓C的頂點(diǎn)).點(diǎn)D在橢圓C上,且AD⊥AB,直線BD與x軸、y軸分別交于M,N兩點(diǎn).
(i)設(shè)直線BD,AM的斜率分別為k1,k2,證明存在常數(shù)λ使得k1=λk2,并求出λ的值;
(ii)求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Q是半徑為1的圓上一動(dòng)點(diǎn),若MN是該圓的一條動(dòng)弦,且|MN|=
2
,則
MQ
MN
的取值范圍是
 
、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若曲線y=ax2+
b
x
(a,b為常數(shù))過點(diǎn)P(2,-5),且該曲線在點(diǎn)P處的切線與直線7x+2y+3=0平行,則a+b的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把5件不同產(chǎn)品擺成一排,若產(chǎn)品A與產(chǎn)品B相鄰,且產(chǎn)品A與產(chǎn)品C不相鄰,則不同的擺法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不共線的向量
α
,
β
,|
α
|=2,|
β
|=1,則向量
β
α
-
β
的夾角的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={y丨y=x2},B={x丨
x+1
x-2
<0},求A∩B=( 。
A、[0,+∞)
B、(-1,2)
C、[0,2)
D、(-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2|x-1|+x-1,g(x)=16x2-8x+1.記f(x)≤1的解集為M,g(x)≤4的解集為N.
(Ⅰ)求M;
(Ⅱ)當(dāng)x∈M∩N時(shí),證明:x2f(x)+x[f(x)]2
1
4

查看答案和解析>>

同步練習(xí)冊(cè)答案