首項(xiàng)為1,公差不為0的等差數(shù)列{an}中,a3、a4、a6是一個(gè)等比數(shù)列的前三項(xiàng),則這個(gè)等比數(shù)列的第四項(xiàng)是( 。
A、8B、-8C、-6D、不確定
考點(diǎn):等差數(shù)列與等比數(shù)列的綜合
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:設(shè)出等差數(shù)列的公差,由a3、a4、a6是一個(gè)等比數(shù)列的前三項(xiàng)列式求出公差,得到等比數(shù)列的前三項(xiàng),則第四項(xiàng)可求.
解答: 解:設(shè)等差數(shù)列{an}的公差為d(d≠0),
由a3、a4、a6是一個(gè)等比數(shù)列的前三項(xiàng),得:
a42=a3a6,
又a1=1,
得(1+3d)2=(1+2d)(1+5d),解得:d=-1.
∴等比數(shù)列的前三項(xiàng)分別為:-1,-2,-4.
則該等比數(shù)列的第四項(xiàng)為-8.
故選:B.
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角φ的終邊經(jīng)過(guò)點(diǎn)P(3,-4),函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象的相鄰的兩條對(duì)稱(chēng)軸之間的距離等于
π
3
,則f(
π
12
)的值為(  )
A、
2
10
B、-
2
10
C、
7
2
10
D、-
7
2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義在R上的偶函數(shù)f(x)滿(mǎn)足f(x+2)=f(x),且當(dāng)x∈[0,1]時(shí),f(x)=x,則方程f(x)=log3|x|的解個(gè)數(shù)是( 。
A、9個(gè)B、2個(gè)
C、4 個(gè)D、6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果兩個(gè)方程的曲線(xiàn)經(jīng)過(guò)若干次平移或?qū)ΨQ(chēng)變換后能夠完全重合,則稱(chēng)這兩個(gè)方程為“互為生成方程對(duì)”.給出下列四對(duì)方程:
①y=sinx+cosx和y=
2
sinx+1;
②y2-x2=2和x2-y2=2;
③y2=4x和x2=4y;
④y=ln(x-1)和y=ex+1.
其中是“互為生成方程對(duì)”有( 。
A、1對(duì)B、2對(duì)C、3對(duì)D、4對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一同學(xué)為研究函數(shù)f(x)=
1+x2
+
1+(1-x)2
(0≤x≤1)的性質(zhì),構(gòu)造了如圖所示的兩個(gè)邊長(zhǎng)為1的正方形ABCD和BEFC,點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),設(shè)CP=x,則AP+PF=f(x),請(qǐng)你參考這些信息,推知函數(shù)g(x)=4f(x)-9的零點(diǎn)的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.
(Ⅰ)證明:AC=AB1;
(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二面角α-MN-β的大小為60°,菱形ABCD在面β內(nèi),A、B兩點(diǎn)在棱MN上,∠BAD=60°,E是AB的中點(diǎn),DO⊥面α,垂足為O.
(Ⅰ)證明:AB⊥平面ODE;
(Ⅱ)求異面直線(xiàn)BC與OD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐A-BCD及其側(cè)視圖、俯視圖如圖所示,設(shè)M,N分別為線(xiàn)段AD,AB的中點(diǎn),P為線(xiàn)段BC上的點(diǎn),且MN⊥NP.

(1)證明:P是線(xiàn)段BC的中點(diǎn);
(2)求二面角A-NP-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線(xiàn)y2=4x上動(dòng)點(diǎn),Q為圓(x-3)2+y2=1上動(dòng)點(diǎn),則距離|PQ|的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案