【題目】如圖,在三棱柱中, 是邊長為4的正方形.平面⊥平面, .

(1)求證: ⊥平面ABC;

(2)求二面角的余弦值;

(3)證明:在線段存在點(diǎn),使得,并求的值.

【答案】(1)見解析(2)(3)

【解析】試題分析:(1)由題意,可根據(jù)面面垂直的性質(zhì)定理進(jìn)行證明,因?yàn)槠矫?/span>垂直于平面,且交線為,又,從而問題可得證;在(2)、(3)由題意,可采用坐標(biāo)法,再通過向量的共線、垂直關(guān)系,以及數(shù)量積等的運(yùn)算,從而問題可得解.

試題解析:(1)證明 在正方形中, .

又平面平面,且平面平面,

平面.

(2)解:由(1)知 ,由題意知,

中, ,

,

.

∴以A為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系A(chǔ)-xyz.

,

于是 ,,,,

設(shè)平面法向量為,

與平面所成角正弦值為.

(3)假設(shè)存在點(diǎn)是直線上一點(diǎn),使,且.

,解得,

,∴0+3(3-3λ)-16λ=0,解得,

因?yàn)?/span>,所以在線段上存在點(diǎn)D,使得.此時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓滿足:①圓心在第一象限,截軸所得弦長為2;②被軸分成兩段圓弧,其弧長的比為;③圓心到直線的距離為.

(Ⅰ)求圓的方程;

(Ⅱ)若點(diǎn)是直線上的動(dòng)點(diǎn),過點(diǎn)分別做圓的兩條切線,切點(diǎn)分別為, ,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系,橢圓)的離心率是,拋物線的焦點(diǎn)的一個(gè)頂點(diǎn)

(1)求橢圓的方程

(2)設(shè)上的動(dòng)點(diǎn),且位于第一象限,在點(diǎn)處的切線交于不同的兩點(diǎn),,線段的中點(diǎn)為,直線與過且垂直于軸的直線交于點(diǎn)

(i)求證:點(diǎn)在定直線上

(ii)直線軸交于點(diǎn),記△的面積為的面積為,的最大值及取得最大值時(shí)點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱中,,

,側(cè)棱底面.

I)證明:平面平面;

II)若直線與平面所成的角的余弦值為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若滿足:對(duì)任意的,都有恒成立,試確定實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圖,在正方體中, 分別是的中點(diǎn).

(1)求證:平面平面;

(2)在棱上是存在一點(diǎn),使得平面,若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的單調(diào)遞減區(qū)間;

(2)求函數(shù)在區(qū)間上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)都在軸上方,且.

1求橢圓的方程;

2當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線方程;

3對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形ABC中,a,b,c分別為角A,B,C所對(duì)的邊,且

(1)求角C的大;

(2)若 ,且三角形ABC的面積為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案