【題目】設(shè)橢圓 的離心率 ,橢圓上一點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)直線l與橢圓交于A,B兩點(diǎn),且AB中點(diǎn)為 ,求直線l方程.
【答案】
(1)解:由點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4,
由橢圓的定義可得2a=4,即a=2,
又e= = ,可得c= ,
b= = ,
即有橢圓C的方程為 =1
(2)解:中點(diǎn)M代入橢圓方程,可得 + <1,
即M在橢圓內(nèi),
設(shè)A(x1,y1),B(x2,y2),
可得x12+2y12=4,x22+2y22=4,
兩式相減可得(x1﹣x2)(x1+x2)+2(y1﹣y2)(y1+y2)=0,
由中點(diǎn)坐標(biāo)公式可得x1+x2=﹣2,y1+y2=1,
可得直線AB的斜率為k= =﹣ =﹣ =1,
即有直線l的方程為y﹣ =x+1,
即為2x﹣2y+3=0.
【解析】(1)由橢圓的定義可得2a=4,即a=2,再由離心率公式和a,b,c的關(guān)系,求得b,進(jìn)而得到橢圓方程;(2)判斷中點(diǎn)M在橢圓內(nèi),設(shè)A(x1 , y1),B(x2 , y2),代入橢圓方程,運(yùn)用作差法和中點(diǎn)坐標(biāo)公式及斜率公式可得直線l的斜率,再由點(diǎn)斜式方程可得直線的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村投資128萬元建起了一處生態(tài)采摘園,預(yù)計(jì)在經(jīng)營(yíng)過程中,第一年支出10萬元,以后每年支出都比上一年增加4萬元,從第一年起每年的銷售收入都為76萬元.設(shè)y表示前n(n∈N*)年的純利潤(rùn)總和(利潤(rùn)總和=經(jīng)營(yíng)總收入﹣經(jīng)營(yíng)總支出﹣投資).
(1)該生態(tài)園從第幾年開始盈利?
(2)該生態(tài)園前幾年的年平均利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種機(jī)器的固定成本為0.5萬元,但每生產(chǎn)1百臺(tái)時(shí),又需可變成本(即另增加投入)0.25萬元.市場(chǎng)對(duì)此商品的年需求量為5百臺(tái),銷售的收入(單位:萬元)函數(shù)為:R(x)=5x﹣ x2(0≤x≤5),其中x是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺(tái)).
(1)將利潤(rùn)表示為產(chǎn)量的函數(shù);
(2)年產(chǎn)量是多少時(shí),企業(yè)所得利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓x2+y2+x﹣6y+m=0和直線x+2y﹣3=0交于P、Q兩點(diǎn),
(1)求實(shí)數(shù)m的取值范圍;
(2)求以PQ為直徑且過坐標(biāo)原點(diǎn)的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0且a≠1,設(shè)
命題p:函數(shù)y=logax在區(qū)間(0,+∞)內(nèi)單調(diào)遞減;
q:曲線y=x2+(2a﹣3)x+1與x軸有兩個(gè)不同的交點(diǎn),
如果p∧q為真命題,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=cos( x+ )的圖象向右平移φ(φ>0)個(gè)單位,所得函數(shù)圖象關(guān)于y軸對(duì)稱,則φ的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某流程圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是( )
A.f(x)=
B.f(x)=ln( ﹣x)
C.f(x)=
D.f(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中邊長(zhǎng)為1,P、Q分別為BC、CD上的點(diǎn),△CPQ周長(zhǎng)為2.
(1)求PQ的最小值;
(2)試探究求∠PAQ是否為定值,若是給出證明;不是說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某工廠對(duì)一批新產(chǎn)品長(zhǎng)度(單位:mm)檢測(cè)結(jié)果的頻率分布直方圖.估計(jì)這批產(chǎn)品的中位數(shù)為( )
A.20
B.25
C.22.5
D.22.75
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com