【題目】如圖,在三棱錐S﹣ABC中,E為棱SC的中點(diǎn),若AC=2 ,SA=SB=AB=BC=SC=2,則異面直線AC與BE所成的角為( )
A.30°
B.45°
C.60°
D.90°
【答案】C
【解析】解:取SA的中點(diǎn)F,連接EF,BF,則
∵E為棱SC的中點(diǎn),
∴EF∥AC,
∴∠BEF(或其補(bǔ)角)為異面直線AC與BE所成的角,
∵AC=2 ,SA=SB=AB=BC=SC=2,
∴BE=EF=BF= ,
∴∠BEF=60°.
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解異面直線及其所成的角的相關(guān)知識(shí),掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)為 ,且離心率 .
(1)求橢圓的方程;
(2)求以點(diǎn)P(2,﹣1)為中點(diǎn)的弦所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,則異面直線A1C與B1C1所成的角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的左、右焦點(diǎn)為F1(﹣2,0),F(xiàn)2(2,0),點(diǎn)M(﹣2, ) 在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知斜率為k的直線l過(guò)橢圓C的右焦點(diǎn)F2 , 與橢圓C相交于A,B兩點(diǎn).
①若|AB|= ,求直線l的方程;
②設(shè)點(diǎn)P( ,0),證明: 為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓x2+y2+x﹣6y+m=0和直線x+2y﹣3=0交于P、Q兩點(diǎn),
(1)求實(shí)數(shù)m的取值范圍;
(2)求以PQ為直徑且過(guò)坐標(biāo)原點(diǎn)的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ | 0 |
| π |
| 2π |
x |
|
| |||
f(x) | 0 | 3 | 0 | ﹣3 | 0 |
(1)請(qǐng)將表中數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)若將函數(shù)f(x)的圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,求當(dāng)x∈[﹣ , ]時(shí),函數(shù)g(x)的值域;
(3)若將y=f(x)圖象上所有點(diǎn)向左平移θ(θ>0)個(gè)單位長(zhǎng)度,得到y(tǒng)=h(x)的圖象,若=h(x)圖象的一個(gè)對(duì)稱中心為( ),求θ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=cos( x+ )的圖象向右平移φ(φ>0)個(gè)單位,所得函數(shù)圖象關(guān)于y軸對(duì)稱,則φ的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點(diǎn),x= 為y=f(x)圖象的對(duì)稱軸,且f(x)在( , )單調(diào),則ω的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各命題中不正確的是( )
A.函數(shù)f(x)=ax+1(a>0,a≠1)的圖象過(guò)定點(diǎn)(﹣1,1)
B.函數(shù) 在[0,+∞)上是增函數(shù)
C.函數(shù)f(x)=logax(a>0,a≠1)在(0,+∞)上是增函數(shù)
D.函數(shù)f(x)=x2+4x+2在(0,+∞)上是增函數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com