【題目】已知某保險公司的某險種的基本保費為(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | ≥4 |
保費(元) |
隨機調(diào)查了該險種的名續(xù)保人在一年內(nèi)的出險情況,得到下表:
出險次數(shù) | 0 | 1 | 2 | 3 | ≥4 |
頻數(shù) | 280 | 80 | 24 | 12 | 4 |
該保險公司這種保險的賠付規(guī)定如下:
出險序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
賠付金額(元) |
將所抽樣本的頻率視為概率.
(1)求本年度續(xù)保人保費的平均值的估計值;
(2)按保險合同規(guī)定,若續(xù)保人在本年度內(nèi)出險次,則可獲得賠付元;依此類推,求本年度續(xù)保人所獲賠付金額的平均值的估計值;
(3)續(xù)保人原定約了保險公司的銷售人員在上午之間上門簽合同,因為續(xù)保人臨時有事,外出的時間在上午之間,請問續(xù)保人在離開前見到銷售人員的概率是多少?
【答案】(1) (2) (3)
【解析】
(1)得出保費,,,,對應(yīng)的概率,即可得出本年度續(xù)保人保費的平均值的估計值;
(2)先計算出每個賠償金額對應(yīng)的概率,然后按照平均值的計算公式得出本年度續(xù)保人所獲賠付金額的平均值的估計值;
(3)由幾何概型概率公式計算即可.
解:(1)由題意可得
保費(元) | |||||
概率 | 0.7 | 0.2 | 0.06 | 0.03 | 0.01 |
本年度續(xù)保人保費的平均值的估計值為
(2)由題意可得
賠償金額(元) | 0 | ||||
概率 | 0.7 | 0.2 | 0.06 | 0.03 | 0.01 |
本年度續(xù)保人所獲賠付金額的平均值的估計值
(3)設(shè)保險公司銷售人員到達的時間為,續(xù)保人離開的時間為,看成平面上的點,全部結(jié)果所構(gòu)成的區(qū)域為
則區(qū)域的面積
事件表示續(xù)保人在離開前見到銷售人員,所構(gòu)成的區(qū)域為
即圖中的陰影部分,其面積
所以,即續(xù)保人在離開前見到銷售人員的概率是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線方程是,求函數(shù)在上的值域;
(2)當時,記函數(shù),若函數(shù)有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動最能促進同學(xué)們進行垃圾分類》向題的統(tǒng)計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結(jié)論錯誤的是( )
A. 回答該問卷的總?cè)藬?shù)不可能是100個
B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問卷的受訪者中,選擇“學(xué)校團委會宣傳”的人數(shù)最少
D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝賓斯基在1915年提出,先作一個正三角形.挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第5個大正三角形中隨機撒512粒大小均勻的細小顆粒物,則落在白色區(qū)域的細小顆粒物的數(shù)量約是( )
A.256B.350C.162D.96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市工會組織了一次工人綜合技能比賽,一共有名工人參加,他們的成績都分布在內(nèi),數(shù)據(jù)經(jīng)過匯總整理得到如下的頻率分布直方圖,規(guī)定成績在分及分以上的為優(yōu)秀.
(1)求圖中的值;
(2)估計這次比賽成績的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表);
(3)某工廠車間有名工人參加這次比賽,他們的成績分布和整體的成績分布情況完全一致,若從該車間參賽的且成績?yōu)閮?yōu)秀的工人中任選兩人,求這兩人成績均低于分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市為迎接一項重要的體育賽事,要完成,兩座場館的地基建造工程.某工程隊需要把600名工人分成兩組,一組完成場館的甲級標準地基2000,同時另一組完成場館的乙級標準地基3000;據(jù)測算,完成甲級標準地基每平方米的工程量為50人天,完成乙級標準地基每平方米的工程量為30人天.
(1)若工程隊分配名工人去場館,求場館地基和場館地基建造時間和(單位:天)的函數(shù)解析式;
(2)、兩個場館同時開工,該工程隊如何分配兩個場館的工人數(shù)量,可以使得工期最短.
(參考數(shù)據(jù):,,.備注:若地基面積為平方米,每平方米的工程量為人/天,工人數(shù)人,則工期為天.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,右焦點F到右準線的距離為3.
(1)求橢圓C的標準方程;
(2)設(shè)過F的直線l與橢圓C相交于P,Q兩點.已知l被圓O:x2+y2=a2截得的弦長為,求△OPQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程,并說明它是何種曲線;
(2)設(shè)點的坐標為,直線交曲線于、兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為上任意一點,,的垂直平分線交于點,記點的軌跡為曲線.
(1)求曲線的方程;
(2)已知點,過的直線交于兩點,證明:直線的斜率與直線的斜率之和為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com