【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,右焦點(diǎn)F到右準(zhǔn)線的距離為3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)F的直線l與橢圓C相交于P,Q兩點(diǎn).已知l被圓O:x2+y2=a2截得的弦長(zhǎng)為,求△OPQ的面積.
【答案】(1)1;(2).
【解析】
(1)由題可得,,再由可求得,即可得到橢圓方程;
(2)顯然直線的斜率不為0,設(shè)直線l的方程為x=my+1,與橢圓方程聯(lián)立,則利用韋達(dá)定理可得的縱坐標(biāo)的關(guān)系,再根據(jù)弦長(zhǎng)公式求得,由直線截圓的弦長(zhǎng)求得,進(jìn)而求解即可.
(1)由題意知,,
因?yàn)?/span>,解得a2=4,b2=3,
所以橢圓的方程為:1
(2)由題意知直線l的斜率不為0,由(1)知F(1,0),
設(shè)直線l的方程為x=my+1,P(x,y),Q(x',y'),
聯(lián)立直線l與橢圓的方程整理得(4+3m2)y2+6my﹣9=0,
所以y+y',yy',
所以|PQ|,
因?yàn)閳AO:x2+y2=4到l的距離d,被圓O:x2+y2=4截得的弦長(zhǎng)為,
所以得14=4(4),解得m2=1,
所以d,|PQ|,
所以S△OPQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對(duì)一次性購(gòu)買(mǎi)2臺(tái)機(jī)器的客戶,推出兩種超過(guò)質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過(guò)2次每次收取維修費(fèi)2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過(guò)4次每次收取維修費(fèi)1000元.某醫(yī)院準(zhǔn)備一次性購(gòu)買(mǎi)2臺(tái)這種機(jī)器,F(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)購(gòu)買(mǎi)哪種延保方案,為此搜集并整理了50臺(tái)這種機(jī)器超過(guò)質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺(tái)數(shù) | 5 | 10 | 20 | 15 |
以這50臺(tái)機(jī)器維修次數(shù)的頻率代替1臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺(tái)機(jī)器超過(guò)質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。
(1)求X的分布列;
(2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
(1)求函數(shù)的極值;
(2)設(shè),對(duì)于任意,總有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某保險(xiǎn)公司的某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買(mǎi)該險(xiǎn)種的投保人稱(chēng)為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | ≥4 |
保費(fèi)(元) |
隨機(jī)調(diào)查了該險(xiǎn)種的名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到下表:
出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | ≥4 |
頻數(shù) | 280 | 80 | 24 | 12 | 4 |
該保險(xiǎn)公司這種保險(xiǎn)的賠付規(guī)定如下:
出險(xiǎn)序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
賠付金額(元) |
將所抽樣本的頻率視為概率.
(1)求本年度續(xù)保人保費(fèi)的平均值的估計(jì)值;
(2)按保險(xiǎn)合同規(guī)定,若續(xù)保人在本年度內(nèi)出險(xiǎn)次,則可獲得賠付元;依此類(lèi)推,求本年度續(xù)保人所獲賠付金額的平均值的估計(jì)值;
(3)續(xù)保人原定約了保險(xiǎn)公司的銷(xiāo)售人員在上午之間上門(mén)簽合同,因?yàn)槔m(xù)保人臨時(shí)有事,外出的時(shí)間在上午之間,請(qǐng)問(wèn)續(xù)保人在離開(kāi)前見(jiàn)到銷(xiāo)售人員的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為().
(1)寫(xiě)出曲線的直角坐標(biāo)方程與曲線的普通方程;
(2)若射線()與曲線,分別交于,兩點(diǎn)(不是原點(diǎn)),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓C:()的上頂點(diǎn)為,離心率為.
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)A作圓(圓在橢圓C內(nèi))的兩條切線分別與橢圓C相交于B,D兩點(diǎn)(B,D不同于點(diǎn)A),當(dāng)r變化時(shí),試問(wèn)直線BD是否過(guò)某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】低碳經(jīng)濟(jì)時(shí)代,文化和旅游兩大產(chǎn)業(yè)逐漸成為我國(guó)優(yōu)先發(fā)展的“綠色朝陽(yáng)產(chǎn)業(yè)”.為了解某市的旅游業(yè)發(fā)展情況,某研究機(jī)構(gòu)對(duì)該市2019年游客的消費(fèi)情況進(jìn)行隨機(jī)調(diào)查,得到頻數(shù)分布表及頻率分布直方圖.
旅游消費(fèi)(千元) | ||||
頻數(shù)(人) | 10 | 60 |
(1)由圖表中數(shù)據(jù),求的值及游客人均消費(fèi)估計(jì)值(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值為代表)
(2)該機(jī)構(gòu)利用最小二乘法得到2013~2017年該市的年旅游人次(千萬(wàn)人次)與年份代碼的線性回歸模型:.
注:年份代碼1~5分別對(duì)應(yīng)年份2013~2017
①試求2013~2017年的年旅游人次的平均值;
②據(jù)統(tǒng)計(jì),2018年該市的年旅游人次為9千萬(wàn)人次.建立2013~2018年該市年旅游人次(千萬(wàn)人次)與年份代碼的線性回歸方程,并估計(jì)2019年該市的年旅游收入.
注:年旅游收入=年旅游人次×人均消費(fèi)
參考數(shù)據(jù):.參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班A、B兩名學(xué)生六次數(shù)學(xué)測(cè)驗(yàn)成績(jī)(百分制)如圖所示:
①A同學(xué)成績(jī)的中位數(shù)大于B同學(xué)成績(jī)的中位數(shù);
②A同學(xué)的平均分比B同學(xué)高;
③A同學(xué)的平均分比B同學(xué)低;
④A同學(xué)成績(jī)方差小于B同學(xué)的方差,
以上說(shuō)法中正確的是( )
A.③④B.①②④C.②④D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(其中為參數(shù)).在以為極點(diǎn)、軸的非負(fù)半軸為極軸的極坐標(biāo)系(兩種坐標(biāo)系的單位長(zhǎng)度相同)中,曲線:的焦點(diǎn)的極坐標(biāo)為.
(1)求常數(shù)的值;
(2)設(shè)與交于、兩點(diǎn),且,求的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com