【題目】如圖,已知平面平行于三棱錐的底面,等邊所在的平面與底面垂直,且,設(shè)

1)求證:;

2)求二面角的余弦值.

【答案】1)證明見解析;(1

【解析】

1)由平面∥平面,根據(jù)面面平行的性質(zhì)定理,可得,,再由,得到.由平面平面,根據(jù)面面垂直的性質(zhì)定理可得平面,從而有.

2)過,根據(jù)題意有平面,過DH,連結(jié)AH由三垂線定理知,所以是二面角的平面角.然后在在中,在中,利用三角形相似求得再在求解.

1)證明:∵平面∥平面,

,

,

又∵平面平面,平面平面,

平面,

平面,

.

2)過,

為正三角形,

D中點,

平面

又∵

平面.

在等邊三角形中,,

DH,連結(jié)AH,

由三垂線定理知,

是二面角的平面角.

中,,

,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,底面,,點為棱的中點,點分別為棱上的動點(與所在棱的端點不重合),且滿足

1)證明:平面平面;

2)當三棱錐的體積最大時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某銀行推出一款短期理財產(chǎn)品,約定如下:

1)購買金額固定;

2)購買天數(shù)可自由選擇,但最短3天,最長不超過10天;

3)購買天數(shù)與利息的關(guān)系,可選擇下述三種方案中的一種:

方案一:;方案二:;方案三:.

請你根據(jù)以上材料,研究下面兩個問題:

1)結(jié)合所學(xué)的數(shù)學(xué)知識和方法,用其它方式刻畫上述三種方案的函數(shù)特征;

2)依據(jù)你的分析,給出一個最佳理財方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓過定點,且與定直線相切.

1)求動圓圓心的軌跡的方程;

2)過點的任一條直線與軌跡交于不同的兩點,試探究在軸上是否存在定點(異于點),使得?若存在,求點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列各命題:

①兩兩相交且不共點的三條直線確定一個平面:

②若真線不平行于平面,則直線與平面有公共點:

③若兩個平面垂直,則一個平面內(nèi)的已知直線必垂直于另一個平面的無數(shù)條直線:

④若兩個二面角的兩個面分別對應(yīng)垂直,則這兩個二面角相等或互補.

則其中正確的命題共有( )個

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,將函數(shù)的圖象向右平移個單位長度,再向下平移個單位長度后,得到函數(shù)的圖象.

1)求函數(shù)的表達式;

2)當時,求在區(qū)間上的最大值和最小值;

3)若函數(shù)上的最小值為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者.為及時有效地對疫情數(shù)據(jù)進行流行病學(xué)統(tǒng)計分析,某地研究機構(gòu)針對該地實際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關(guān)數(shù)據(jù).

1)請將列聯(lián)表填寫完整:

有接觸史

無接觸史

總計

有武漢旅行史

27

無武漢旅行史

18

總計

27

54

2)能否在犯錯誤的概率不超過0.025的前提下認為有武漢旅行史與有確診病例接觸史有關(guān)系?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某村充分利用自身資源,大力發(fā)展養(yǎng)殖業(yè)以增加收入.計劃共投入80萬元,全部用于甲、乙兩個項目,要求每個項目至少要投入20萬元在對市場進行調(diào)研時發(fā)現(xiàn)甲項目的收益與投入x(單位:萬元)滿足,乙項目的收益與投入x(單位:萬元)滿足.

1)當甲項日的投入為25萬元時,求甲、乙兩個項目的總收益;

2)問甲、乙兩個項目各投入多少萬元時,總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1) 當時,解關(guān)于的不等式

(2) 若對任意時,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案