【題目】2019年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者.為及時有效地對疫情數(shù)據(jù)進行流行病學統(tǒng)計分析,某地研究機構針對該地實際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關數(shù)據(jù).
(1)請將列聯(lián)表填寫完整:
有接觸史 | 無接觸史 | 總計 | |
有武漢旅行史 | 27 | ||
無武漢旅行史 | 18 | ||
總計 | 27 | 54 |
(2)能否在犯錯誤的概率不超過0.025的前提下認為有武漢旅行史與有確診病例接觸史有關系?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,天花板上掛著3串玻璃球,射擊玻璃球規(guī)則:每次擊中1球,每串中下面球沒擊中,上面球不能擊中,則把這6個球全部擊中射擊方法數(shù)是( )
A.78B.60C.48D.36
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設x=1與x=2是函數(shù)f(x)=aln x+bx2+x的兩個極值點.
(1)試確定常數(shù)a和b的值;
(2)判斷x=1,x=2是函數(shù)f(x)的極大值點還是極小值點,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E:+=1(a>b>0)的離心率為,焦點到相應準線的距離為.
(1) 求橢圓E的標準方程;
(2) 已知P(t,0)為橢圓E外一動點,過點P分別作直線l1和l2,直線l1和l2分別交橢圓E于點A,B和點C,D,且l1和l2的斜率分別為定值k1和k2,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定平面上的五個點、、、、,任意三點不共線.由這些點連成4條線段,每個點至少是一條線段的端點.則不同的連結方式有( ).
A. 120種 B. 125種 C. 130種 D. 135種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學習雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學習雷鋒精神時全修好;單位對學習雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如下:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總 計 | |
學習雷鋒精神前 | 50 | 150 | 200 |
學習雷鋒精神后 | 30 | 170 | 200 |
總 計 | 80 | 320 | 400 |
(1)求:學習雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學習雷鋒精神是否有關?
(2)請說明是否有97.5%以上的把握認為損毀餐椅數(shù)量與學習雷鋒精神有關?
參考公式: ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:某射手射擊一次,擊中目標的概率是0.9,他連續(xù)射擊三次,且他每次射擊是否擊中目標之間沒有影響,有下列結論:①他三次都擊中目標的概率是;②他第三次擊中目標的概率是; ③他恰好2次擊中目標的概率是;④他至少次擊中目標的概率是;⑤他至多2次擊中目標的概率是.其中正確命題的序號是 ________(正確命題的序號全填上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com