精英家教網 > 高中數學 > 題目詳情

【題目】中,三個內角的對邊分別為a,bc,,

B的值;

,求的面積S

【答案】1;(260

【解析】

試題(1利用正弦定理變形得:,即:,于是可以求出的值,再求出的值,由已知條件可以求出的值,再求出的值,然后可以根據A+C的值求出B的值;(2)根據已知條件及第(1)問求出的B的值,利用正弦定理求出的值,根據三角形面積公式就可以求出的面積。本題重點考查解三角形,利用正弦定理變形,將邊角互相轉化,達到求邊或者求角的目的,另外注意求角的問題轉化為求角的三角函數值,能夠熟練運用三角公式進行解題。考查學生對基本公式和基本方法的掌握。

試題解析:(1 ,

的內角,

,

的內角,

,

2

的面積

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列說法錯誤的是( )

A.命題“若,則”的逆否命題為:“若,則

B.”是“”的充分而不必要條件

C.為假命題,則、均為假命題

D.命題“存在,使得”,則非“任意,均有

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,是棱上的一點.

(1)證明:平面;

(2)若平面,求的值;

(3)在(2)的條件下,三棱錐的體積是18,求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求上的最值;

(2)若,當有兩個極值點時,總有,求此時實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, , , 平面.

(1)求證: 平面;

(2)若為線段的中點,且過三點的平面與線段交于點,確定點的位置,說明理由;并求三棱錐的高.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點, 軸為極軸建立極坐標系,曲線的極坐標為

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若曲線和曲線有三個公共點,求以這三個公共點為頂點的三角形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓C=1ab0)的左右焦點分別為F1,F2,焦距為2,一條準線方程為x=2P為橢圓C上一點,直線PF1交橢圓C于另一點Q

1)求橢圓C的方程;

2)若點P的坐標為(0,b),求過點PQ,F2三點的圓的方程;

3)若=,且λ[],求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)10年間梅雨季節(jié)的降雨量單位:的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:

假設每年的梅雨季節(jié)天氣相互獨立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.

老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元而乙品種楊梅的畝產量與降雨量之間的關系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為,請你幫助老李分析,他來年應該種植哪個品種的楊梅可以使總利潤萬元的期望更大?并說明理由.

降雨量

畝產量

500

700

600

400

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】滿足約束條件的最小值為7,則_________.

查看答案和解析>>

同步練習冊答案