【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,是棱上的一點(diǎn).

(1)證明:平面;

(2)若平面,求的值;

(3)在(2)的條件下,三棱錐的體積是18,求點(diǎn)到平面的距離.

【答案】(1)見(jiàn)解析 ;(2) ;(3).

【解析】

1)推導(dǎo)出BCPD,BDBC,由此能證明BC⊥平面PBD.(2)連結(jié)AC,交BDO,連結(jié)OE,由PA∥平面BDE,得OEPA,由此能求出 .(3B到平面PCD的距離d

3,設(shè)PDa,則 ,由三棱錐PBDE的體積是18,求出PDa6,設(shè)點(diǎn)D到平面PAB的距離為h,由VPABDVDPAB,能求出D點(diǎn)到平面PAB的距離.

1)∵在四棱錐PABCD中,底面ABCD是平行四邊形,PD⊥平面ABCD

BCPD,∵ADBD6,AB6,BCAD,∴BD2+BC2CD2,∴BDBC,

PD∩BDD,∴BC⊥平面PBD

2)連結(jié)ACBDO,連結(jié)OE,則OAC的中點(diǎn),

PA∥平面BDE,∴OEPA,∴EPC的中點(diǎn),∴

3B到平面PCD的距離d3設(shè)PDa,則∵三棱錐PBDE的體積是18,∴VPBDEVBPDE18,解得PDa6,設(shè)點(diǎn)D到平面PAB的距離為h,

PD⊥平面ABCD,ADBD6AB6,

PAPB6,

18

18,

VPABDVDPAB,∴,

h2.∴D點(diǎn)到平面PAB的距離為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修:不等式選講

已知函數(shù)f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,中,,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是定義在上的函數(shù),其導(dǎo)函數(shù)為,若,,則不等式(其中為自然對(duì)數(shù)的底數(shù))的解集為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美,如圖所示的太極圖是由黑白兩個(gè)魚(yú)形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對(duì)稱(chēng)統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)AO的周長(zhǎng)和面積同時(shí)平分的函數(shù)稱(chēng)為這個(gè)圓的“優(yōu)美函數(shù)”,給出下列命題:

對(duì)于任意一個(gè)圓O,其“優(yōu)美函數(shù)”有無(wú)數(shù)個(gè);

函數(shù)fx)=ln)可以是某個(gè)圓的“優(yōu)美函數(shù)”;

函數(shù)y=1+sinx可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;

函數(shù)y=2x+1可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;

函數(shù)yfx)是“優(yōu)美函數(shù)”的充要條件為函數(shù)yfx)的圖象是中心對(duì)稱(chēng)圖形.

其中正確的命題是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,橢圓C過(guò)點(diǎn),兩個(gè)焦點(diǎn)為,,E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),直線EF的斜率為,直線l與橢圓C相切于點(diǎn)A,斜率為

求橢圓C的方程;

的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知直線經(jīng)過(guò)點(diǎn),且與直線的夾角為,求直線的方程;

2)已知中頂點(diǎn)的平分線方程分別為.邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,三個(gè)內(nèi)角的對(duì)邊分別為a,b,c,

B的值;

設(shè),求的面積S

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的一個(gè)焦點(diǎn)是,且

1)求雙曲線的方程

2)設(shè)經(jīng)過(guò)焦點(diǎn)的直線的一個(gè)法向量為,當(dāng)直線與雙曲線的右支相交于不同的兩點(diǎn)時(shí),求實(shí)數(shù)的取值范圍

3)設(shè)(2)中直線與雙曲線的右支相交于兩點(diǎn),問(wèn)是否存在實(shí)數(shù),使得為銳角?若存在,請(qǐng)求出的范圍;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案