△ABC中,角A、B、C對邊分別是a、b、c,滿足6
AB
AC
=(b+c)2-a2
(Ⅰ)求角A的大;
(Ⅱ)若函數(shù)f(x)=cos2(x+
A
2
)-sin2(x-
A
2
)+
3
2
sin2x,x∈[0,
π
2
],求函數(shù)f(x)的最小值.
考點:余弦定理,平面向量數(shù)量積的運算,三角函數(shù)中的恒等變換應(yīng)用
專題:解三角形
分析:(Ⅰ)△ABC中,由條件求得6bc•cosA=a2+b2+c2+2bc,再由余弦定理可得b2=b2+c2-2bc•cosA,求得cosA的值,可得A的值.
(Ⅱ)利用三角函數(shù)的恒等變換化簡函數(shù)的解析式為f(x)=sin(2x+
π
6
),再根據(jù)x∈[0,
π
2
],利用正弦函數(shù)的定義域和值域求得函數(shù)f(x)的最小值.
解答: 解:(Ⅰ)△ABC中,∵6
AB
AC
=(b+c)2-a2,∴6bc•cosA=a2+b2+c2+2bc,
再由余弦定理可得b2=b2+c2-2bc•cosA,∴cosA=
1
2
,∴A=
π
3

(Ⅱ)∵函數(shù)f(x)=cos2(x+
A
2
)-sin2(x-
A
2
)+
3
2
sin2x
=cos2(x+
π
6
)-sin2(x-
π
6
)+
3
2
sin2x=
1+cos(2x+
π
3
)
2
-
1-cos(2x-
π
3
)
2
+
3
2
sin2x
=
1
2
cos2x+
3
2
sin2x=sin(2x+
π
6
),
又x∈[0,
π
2
],∴2x+
π
6
∈[
π
6
,
6
],∴sin(2x+
π
6
)∈[-
1
2
,1],
故函數(shù)的最小值為
1
2
點評:本題主要考查兩個向量的數(shù)量積的定義、余弦定理、三角函數(shù)的恒等變換、正弦函數(shù)的定義域和值域,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線關(guān)于x軸對稱,它的頂點在坐標(biāo)原點,點P(1,2),A(x1,y1),B(x2,y2)均在拋物線上.
(1)求該拋物線方程;
(2)若AB的中點坐標(biāo)為(1,-1),求直線AB方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
2
sin
π
8
xcos
π
8
x+2
2
cos2
π
8
x-
2
,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)f(x)圖象上的兩點P,Q的橫坐標(biāo)依次為2,4,O為坐標(biāo)原點,求△OPQ的外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
1
x
+
1
2x2
,a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:(x-1)(e-x-x)+2lnx<
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從6名教師中選派3名教師同時去3個邊遠地區(qū)支教,每地1人,其中甲和乙不同去,甲和丙只能同去或同不去,則不同的選派方案共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(a+
b
x
)en,a,b為常數(shù),a≠0.
(Ⅰ)若a=2,b=1,求函數(shù)f(x)在(0,+∞)上的單調(diào)區(qū)間;
(Ⅱ)若a>0,b>0,求函數(shù)f(x)在區(qū)間[1,2]的最小值;
(Ⅲ)若a=1,b=-2時,不等式f(x)≤lnx•en恒成立,判斷代數(shù)式[(n+1)!]2與(n+1)en-2(n∈N*)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex-ax-a.
(1)若a>0,f(x)≥0對一切x∈R恒成立,求a的最大值;
(2)設(shè)g(x)=f(x)+
a
ex
,且A(x1,y1)、B(x1,y2)(x1≠x2)是曲線y=g(x)上任意兩點,若對任意a≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
3a2
x
-2alnx在區(qū)間(1,2)內(nèi)是增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y與x之間具有很強的線性相關(guān)關(guān)系,現(xiàn)觀測得到(x,y)的四組觀測值并制作了如下的對照表,由表中數(shù)據(jù)粗略地得到線性回歸直線方程為
y
=
b
x+60,其中
b
的值沒有寫上.當(dāng)x等于-5時,預(yù)測y的值為
 
x 18 13 10 -1
y 24 34 38 64

查看答案和解析>>

同步練習(xí)冊答案