【題目】某廠(chǎng)能夠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)這兩種產(chǎn)品每噸所需的煤、電以及每噸的產(chǎn)值分別是:
用煤(t) | 用電(kw) | 產(chǎn)值(千元) | |
甲種產(chǎn)品 | 70 | 20 | 80 |
乙種產(chǎn)品 | 30 | 50 | 110 |
如果該廠(chǎng)每月至多供煤560t,供電450kw,問(wèn)如何安排生產(chǎn),才能使該廠(chǎng)月產(chǎn)值最大?月產(chǎn)值是多少?
【答案】安排甲月產(chǎn),乙月產(chǎn)時(shí),該廠(chǎng)月產(chǎn)值最大,最大值為1170千元.
【解析】
根據(jù)題意得到不等式組和目標(biāo)函數(shù),畫(huà)出可行域,根據(jù)目標(biāo)函數(shù)的幾何意義得到最值。
設(shè)月產(chǎn)甲,乙,則,月產(chǎn)值,
上述不等式組所表示的平面區(qū)域如圖所示的陰影部分,
求的最大值問(wèn)題轉(zhuǎn)化為求在軸上截距的最大值.
由,解得,
即直線(xiàn)與直線(xiàn)的交點(diǎn)坐標(biāo)是.
先作直線(xiàn),平移可知當(dāng)經(jīng)過(guò)點(diǎn)時(shí)截距最大.
所以當(dāng),時(shí),.
即安排甲月產(chǎn),乙月產(chǎn)時(shí),該廠(chǎng)月產(chǎn)值最大,最大值為1170千元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,右頂點(diǎn),上頂點(diǎn)為B,左右焦點(diǎn)分別為,且,過(guò)點(diǎn)A作斜率為的直線(xiàn)l交橢圓于點(diǎn)D,交y軸于點(diǎn)E.
(1)求橢圓C的方程;
(2)設(shè)P為的中點(diǎn),是否存在定點(diǎn)Q,對(duì)于任意的都有?若存在,求出點(diǎn)Q;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為.
(1)求曲線(xiàn)C的極坐標(biāo)方程和直線(xiàn)l的直角坐標(biāo)方程;
(2)若射線(xiàn)與曲線(xiàn)C交于點(diǎn)A(不同于極點(diǎn)O),與直線(xiàn)l交于點(diǎn)B,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面為等可能性事件,棋盤(pán)上標(biāo)有第0站,第1站,第2站,……,第100站.一枚棋子開(kāi)始在第0站,棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若擲出正面,棋向前跳一站(從k到),若擲出反面,棋向前跳兩站(從k到),直到棋子跳到第99站(勝利大本營(yíng))或跳到第100站(失敗集中營(yíng))時(shí),該游戲結(jié)束.設(shè)棋子跳到第n站概率為.
(1)求,,的值;
(2)求證:,其中,;
(3)求及的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)甲、乙、丙三臺(tái)機(jī)器是否需要照顧相互之間沒(méi)有影響.已知在某1 h內(nèi),甲、乙都需要照顧的概率為0.05,甲、丙都需要照顧的概率為0.1,乙、丙都需要照顧的概率為0.125.
(1)求甲、乙、丙每臺(tái)機(jī)器在這1 h內(nèi)需要照顧的概率分別是多少?
(2)計(jì)算這1 h內(nèi)至少有一臺(tái)機(jī)器需要照顧的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}是一個(gè)首項(xiàng)為2,公比為q(q1)的等比數(shù)列,且3a1,2a2,a3成等差數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn}的前n項(xiàng)和為Sn,b1=1,且1(n≥2),求數(shù)列{anbn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com