【題目】己知函數(shù)y=f(x)在R上單調(diào)遞增,函數(shù)y=f(x+1)的圖象關(guān)于點(diǎn)(﹣1,0)對(duì)稱,f(﹣1)=﹣2,則滿足﹣2≤f(lgx﹣1)≤2的x的取值范圍是( )
A.B.C.D.
【答案】C
【解析】
根據(jù)y=f(x+1)的圖象關(guān)于點(diǎn)(﹣1,0)對(duì)稱,即可得出f(x)是奇函數(shù),從而根據(jù)f(﹣1)=﹣2得出f(1)=2,從而根據(jù)﹣2≤f(lgx﹣1)≤2得出f(﹣1)≤f(lgx﹣1)≤f(1),再根據(jù)f(x)在R上單調(diào)遞增即可得出﹣1≤lgx﹣1≤1,解出x的范圍即可.
∵y=f(x+1)的圖象關(guān)于點(diǎn)(﹣1,0)對(duì)稱,
∴y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,
∴函數(shù)f(x)為奇函數(shù),且f(﹣1)=﹣2,
∴f(1)=2,
∴由﹣2≤f(lgx﹣1)≤2得,f(﹣1)≤f(lgx﹣1)≤f(1),且f(x)在R上單調(diào)遞增,
∴﹣1≤lgx﹣1≤1,即0≤lgx≤2,解得1≤x≤100,
∴x的取值范圍是[1,100].
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)討論的單調(diào)性;
(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍(為自然常數(shù));
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若各項(xiàng)為正實(shí)數(shù)的數(shù)列滿足,則稱數(shù)列為“算術(shù)平方根遞推數(shù)列”.
已知數(shù)列滿足且點(diǎn)在二次函數(shù)的圖象上.
(1)試判斷數(shù)列是否為算術(shù)平方根遞推數(shù)列?若是,請(qǐng)說(shuō)明你的理由;
(2)記,求證:數(shù)列是等比數(shù)列,并求出通項(xiàng)公式;
(3)從數(shù)列中依據(jù)某種順序自左至右取出其中的項(xiàng),把這些項(xiàng)重新組成一個(gè)新數(shù)列:.若數(shù)列是首項(xiàng)為、公比為的無(wú)窮等比數(shù)列,且數(shù)列各項(xiàng)的和為,求正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中已知橢圓過(guò)點(diǎn),其左、右焦點(diǎn)分別為,離心率為.
(1)求橢圓E的方程;
(2)若A,B分別為橢圓E的左、右頂點(diǎn),動(dòng)點(diǎn)M滿足,且MA交橢圓E于點(diǎn)P.
(i)求證:為定值;
(ii)設(shè)PB與以PM為直徑的圓的另一交點(diǎn)為Q,問(wèn):直線MQ是否過(guò)定點(diǎn),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)都是正數(shù)的數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,求和;
(3)是否存在正整數(shù),,,使得,,成等差數(shù)列?若存在,求出所有滿足要求的,,,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的定義域I=(﹣∞,0)∪(0,+∞),在(0,+∞)上為增函數(shù),且x1,x2∈I,恒有f(x1x2)=f(x1)+f(x2).
(1)求證:f(x)是偶函數(shù):
(2)若f(m)﹣f(2m+1)<3m2+4m+1,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,將曲線向左平移個(gè)單位長(zhǎng)度得到曲線.
(1)求曲線的參數(shù)方程;
(2)已知為曲線上的動(dòng)點(diǎn), 兩點(diǎn)的極坐標(biāo)分別為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面四邊形為平行四邊形,為的中點(diǎn),為上一點(diǎn),且(如圖).
(1)證明:平面;
(2)當(dāng)平面平面,,時(shí),求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com