科目: 來源: 題型:
【題目】如圖,拋物線,經(jīng)過點,,三點.
求拋物線的解析式及頂點M的坐標;
連接AC、MB,P為線段MB上的一個動點(不與點M、B重合),過點P作x軸的垂線PQ,若OQ=a,四邊形ACPQ的面積為s,求a為何值時,面積s最大;
點N是拋物線上第四象限的一個定點,坐標為 ,過點C作直線軸,動點在直線l上,動點在x軸上,連接PM、PQ、NQ,當m為何值時,的和最小,并求出和的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,CD是⊙O的直徑,點B在⊙O上,連接BC、BD,直線AB與CD的延長線相交于點A,AB2=ADAC,OE∥BD交直線AB于點E,OE與BC相交于點F.
(1)求證:直線AE是⊙O的切線;
(2)若⊙O的半徑為3,cosA=,求OF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】我市華潤生活超市準備一次性購進A、B兩種品牌的飲料100箱,此兩種飲料每箱的進價和售價如下表所示設(shè)購進A種飲料x箱,且所購進的兩種飲料能全部賣出,獲得的總利潤為y元.
品牌 | A | B |
進價元箱 | 65 | 49 |
售價元箱 | 80 | 62 |
求y關(guān)于x的函數(shù)關(guān)系式;
由于資金周轉(zhuǎn)原因,用于超市購進A、B兩種飲料的總費用不超過5600元,并要求獲得利潤不低于1380元,則從兩種飲料箱數(shù)上考慮,共有哪幾種進貨方案?利潤售價進價
查看答案和解析>>
科目: 來源: 題型:
【題目】我市某中學藝術(shù)節(jié)期間,向全校學生征集書畫作品九年級美術(shù)王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.
王老師所調(diào)查的4個班征集到作品共 件,其中B班征集到作品 件,請把圖2補充完整;
王老師所調(diào)查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?
如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生現(xiàn)在要在其中抽兩人去參加學校總結(jié)表彰座談會,求恰好抽中一男一女的概率(要求寫出用樹狀圖或列表分析過程)
查看答案和解析>>
科目: 來源: 題型:
【題目】平面直角坐標系中,一次函數(shù)的圖像交x軸于點A,交y軸于點B且與反比例函數(shù)(k為常數(shù),k≠0)的圖象分別交于C、D兩點,過點C作軸于M,,,
(1)求直線AB和反比例函數(shù)的解析式.
(2)結(jié)合圖象直接寫出:當時,x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在中,,,,點在邊上,,射線交于點,點從點出發(fā),以每秒個單位長度的速度沿射線方向運動,過點作,交射線于點,以、為鄰邊作,設(shè)點的運動時間為.
(1)線段的長為 (用含的代數(shù)式表示)
(2)求點落在上時的值;
(3)設(shè)與的重疊部分圖形的面積為(平方單位),當時,求與之間的函數(shù)關(guān)系式.
(4)當時,直接寫出為等腰三角形時的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】地和地之間的鐵路交通設(shè)有特快列車和普通列車兩種車次,某天一輛普通列車從A地出發(fā)勻速駛向地,同時另一輛特快列車從地出發(fā)勻速駛向地,兩車與地的距離(千米)與行駛時間(時)的函數(shù)關(guān)系如圖所示.
(1)地到地的距離為 千米,普通列車到達地所用時間為 小時;
(2)求特快列車與地的距離與的函數(shù)關(guān)系式;
(3)在、兩地之間有一座鐵路橋,特快列車到鐵路橋后又行駛小時與普通列車相遇,直接寫出地與鐵路橋之間的距離 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:二次函數(shù)
(1)通過配方將它寫成的形式.
(2)當 時,函數(shù)有最 值,是 .
(3)當 時,隨的增大而增大;)當 時,隨的增大而減小.
(4)該函數(shù)圖象由的圖象經(jīng)過怎樣的平移得到?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1),矩形ABCD的一邊BC在直角坐標系中x軸上,折疊邊AD,使點D落在x軸上點F處,折痕為AE,已知AB=8,AD=10,并設(shè)點B坐標為(m,0),其中m>0.
(1)求點E、F的坐標(用含m的式子表示);(5分)
(2)連接OA,若△OAF是等腰三角形,求m的值;(4分)
(3)如圖(2),設(shè)拋物線y=a(x-m-6)2+h經(jīng)過A、E兩點,其頂點為M,連接AM,若∠OAM=90°,求a、h、m的值. (5分)
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)學課上,老師出示了如下框中的題目:
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況,探索結(jié)論
當點E為AB的中點時,如圖1,確定線段AE與DB的大小關(guān)系.請你直接寫出結(jié)論:AE_______DB(填“>”,“<”或“=”).
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”)理由如下:如圖2,過點E作EF∥BC,交AC于點F,(請你接著繼續(xù)完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在等邊三角形ABC中,點E在直線上AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為3,AE=5,求CD的長(請你直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com