【題目】如圖,在中,,,點在邊上,,射線于點,點從點出發(fā),以每秒個單位長度的速度沿射線方向運動,過點,交射線于點,以、為鄰邊作,設(shè)點的運動時間為.

1)線段的長為 (用含的代數(shù)式表示)

2)求點落在上時的值;

3)設(shè)的重疊部分圖形的面積為(平方單位),當(dāng)時,求之間的函數(shù)關(guān)系式.

4)當(dāng)時,直接寫出為等腰三角形時的值.

【答案】(1)x;(2x=2;(3)當(dāng)時,;當(dāng)時,;當(dāng)時,;(3)(4,

【解析】

1)由題意得,,,,且=,根據(jù),求出;(2)通過即可求出x的值;(3)分三種情況,分別求解即可;(4)分三種情況線段相等分別討論,即時,時與當(dāng)時分別求解即可.

解:(1)由題意,得,,.

=,

.

2)當(dāng)點落在上時,

.

3)由上圖知當(dāng)時,陰影部分面積為的面積,,即;

當(dāng)時,

當(dāng)時,如下圖作 ,

又已知PF∥DE

重合部分面積

故答案為:當(dāng)時,;

當(dāng)時,.

4

①當(dāng)

②當(dāng)

解得:(舍去)

③當(dāng)

解得:(舍去)

x的取值為:,,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的布袋里裝有4個標(biāo)有1,2,3,4的小球,它們的形狀、大小完全相同,小明從布袋里隨機(jī)取出一個小球,記下數(shù)字為,小紅在剩下的3個小球中隨機(jī)取出一個小球,記下數(shù)字為。

(1)計算由、確定的點在函數(shù)的圖象上的概率;

(2)小明和小紅約定做一個游戲,其規(guī)則為:若、滿足>6則小明勝,若、滿足<6則小紅勝,這個游戲公平嗎?說明理由.若不公平,請寫出公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于以AB為直徑的⊙O,過點A作⊙O的切線,與BC的延長線相交于點D,在CB上截取CECD,連接AE并延長,交⊙O于點F,連接CF

1)求證:ACCF;

2)若AB4,sinB,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A、B、PD、C都在在⊙O上,且四邊形BCEP是平行四邊形.

1)證明:;

2)若AEBCAB,的長度是,求EC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種火爆的網(wǎng)紅電子產(chǎn)品,每件產(chǎn)品成本元、工廠將該產(chǎn)品進(jìn)行網(wǎng)絡(luò)批發(fā),批發(fā)單價(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿足如圖所示的函數(shù)關(guān)系.

直接寫出之間所滿足的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

若一次性批發(fā)量不超過件,當(dāng)批發(fā)量為多少件時,工廠獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線,經(jīng)過點,三點.

求拋物線的解析式及頂點M的坐標(biāo);

連接AC、MB,P為線段MB上的一個動點(不與點M、B重合),過點Px軸的垂線PQ,若OQ=a,四邊形ACPQ的面積為s,求a為何值時,面積s最大;

N是拋物線上第四象限的一個定點,坐標(biāo)為 ,過點C作直線軸,動點在直線l上,動點x軸上,連接PM、PQNQ,當(dāng)m為何值時,的和最小,并求出和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩位同學(xué)在足球場上游戲,兩人的運動路線如圖1所示,其中AC=DB,小王從點A出發(fā)沿線段AB運動到點B,小林從點C出發(fā),以相同的速度沿⊙O逆時針運動一周回到點C,兩人同時開始運動,直到都停止運動時游戲結(jié)束,其間他們與點C的距離y與時間x(單位:秒)的對應(yīng)關(guān)系如圖2所示,結(jié)合圖象分析,下列說法正確的是( )

A. 小王的運動路程比小林的長

B. 兩人分別在秒和秒的時刻相遇

C. 當(dāng)小王運動到點D的時候,小林已經(jīng)過了點D

D. 秒時,兩人的距離正好等于的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD,AB=6,BC=8.P在矩形ABCD的內(nèi)部,點E在邊BC,滿足PBE∽△DBC,APD是等腰三角形PE的長為數(shù)___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:的高,且.

1)如圖1,求證:;

2)如圖2,點EAD上,連接,將沿折疊得到,相交于點,若BE=BC,求的大;

3)如圖3,在(2)的條件下,連接,過點,交的延長線于點,若,,求線段的長.

1. 2. 3.

查看答案和解析>>

同步練習(xí)冊答案