【題目】如圖,在正方形ABCD中,是等邊三角形,AP、BP的延長線分別交邊CD于點(diǎn)E、F,聯(lián)結(jié)AC、CP、AC與BF相交于點(diǎn)H,下列結(jié)論中錯誤的是( )
A.AE=2DEB.C.D.
【答案】C
【解析】
A.利用直角三角形30度角的性質(zhì)即可解決問題.
B.根據(jù)兩角相等兩個三角形相似即可判斷.
C.通過計算證明∠DPB≠∠DPF,即可判斷.
D.利用相似三角形的性質(zhì)即可證明.
解:∵四邊形ABCD是正方形,
∴∠D=∠DAB=90°,
∵△ABP是等邊三角形,
∴∠PAB=∠PBA=∠APB=60°,
∴∠DAE=30°,
∴AE=2DE,故A正確;
∵AB∥CD,
∴∠CFP=∠ABP=∠APH=60°,
∵∠PHA=∠PBA+∠BAH=60°+45°=105°,
又∵BC=BP,∠PBC=30°,
∴∠BPC=∠BCP=75°,
∴∠CPF=105°,
∴∠PHA=∠CPF,又易得∠APB=∠CFP=60°,
∴△CFP∽△APH,故B正確;
∵∠CPB=60°+75°=135°≠∠DPF,
∴△PFC與△PCA不相似,故C錯誤;
∵∠PCH=∠PCB-∠BCH=75°-45°=30°,
∴∠PCH=∠PBC,
∵∠CPH=∠BPC,
∴△PCH∽△PBC,
∴,
∴PC2=PHPB,故D正確,
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))
如圖①,正方形AEFG的兩邊分別在正方形ABCD的邊AB和AD上,連接CF.
填空:①線段CF與DG的數(shù)量關(guān)系為 ;
②直線CF與DG所夾銳角的度數(shù)為 .
(2)(拓展探究)
如圖②,將正方形AEFG繞點(diǎn)A逆時針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,請利用圖②進(jìn)行說明.
(3(解決問題)
如圖③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O為AC的中點(diǎn).若點(diǎn)D在直線BC上運(yùn)動,連接OE,則在點(diǎn)D的運(yùn)動過程中,線段OE長的最小值為 (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長BC至點(diǎn)D,使DC=CB,延長DA
與⊙O的另一個交點(diǎn)為E,連結(jié)AC,CE。
(1)求證:∠B=∠D;
(2)若AB=4,BC-AC=2,求CE的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸的負(fù)半軸交于點(diǎn),與軸交于點(diǎn),連接,點(diǎn)分別是直線與拋物線上的點(diǎn),若點(diǎn)圍成的四邊形是平行四邊形,則點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)和是一次函數(shù)與反比例函數(shù)圖象的連個不同交點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線以及分別與軸交于點(diǎn)和.
(1)求反比例函數(shù)的表達(dá)式;
(2)若,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在梯形ABCD中,AB//CD,AB=12,CD=7,點(diǎn)E在邊AD上,,過點(diǎn)E作EF//AB交邊BC于點(diǎn)F.
(1)求線段EF的長;
(2)設(shè),,聯(lián)結(jié)AF,請用向量表示向量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x+6與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)如圖1,點(diǎn)P為直線BC上方拋物線上一動點(diǎn),過點(diǎn)P作PH∥y軸,交直線BC于點(diǎn)H,過點(diǎn)P作PQ⊥BC于點(diǎn)Q,當(dāng)PQ﹣PH最大時,點(diǎn)C關(guān)于x軸的對稱點(diǎn)為點(diǎn)D,點(diǎn)M為直線BC上一動點(diǎn),點(diǎn)N為y軸上一動點(diǎn),連接PM、MN,求PM+MN+ND的最小值;
(2)如圖2,連接AC,將△OAC繞著點(diǎn)O順時針旋轉(zhuǎn),記旋轉(zhuǎn)過程中的△OAC為△OA'C',點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)A',點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)C'.當(dāng)點(diǎn)A'剛好落在線段AC上時,將△OA'C'沿著直線BC平移,在平移過程中,直線OC'與拋物線對稱軸交于點(diǎn)E,與x軸交于點(diǎn)F,設(shè)點(diǎn)R是平面內(nèi)任意一點(diǎn),是否存在點(diǎn)R,使得以B、E、F、R為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)R的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝中華人民共和國建國70周年,某校從A、B兩位男生和D、E兩位女生中選派學(xué)生,參加全區(qū)中小學(xué)“我和我的祖國”演講比賽.
(1)如果選派一位學(xué)生參賽,那么選派到的代表是A同學(xué)的概率是 ;
(2)如果選派兩位學(xué)生參賽,用樹狀圖或列表法,求恰好選派一男一女兩位同學(xué)參賽的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com