【題目】已知:四邊形ABCD中,AC為對角線,∠DAC=∠BCA,且ADBC,CDAD于點D

1)如圖1,求證:四邊形ABCD是矩形。

2)如圖2,點E和點F分別為邊AB和邊BC的中點,連接DEDF分別交AC于點G和點H,連接BG,在不連接其它線段的情況下,請寫出所有面積是FHC面積的2倍的所有三角形。

【答案】1)見解析;(2)△ADG,△DGH,△CDH,△ABG

【解析】

1)根據(jù)平行四邊形的判定定理得到四邊形ABCD是平行四邊形,由∠D=90°,于是得到結(jié)論;
2)根據(jù)矩形的性質(zhì)得到AB=CD,根據(jù)相似三角形的性質(zhì)得到AG=GH=CH,得到SADG=SDGH=SCDH,根據(jù)全等三角形的性質(zhì)得到SABG=SCDH,于是得到結(jié)論.

1)證明:∵∠DAC=BCA
ADBC,
AD=BC
∴四邊形ABCD是平行四邊形,
CDAD,
∴∠D=90°,
ABCD是矩形;
2)解:∵四邊形ABCD是矩形,
AB=CD
∵點E和點F分別為邊AB和邊BC的中點,
AB=CD=2AE,AD=BC=2CF,
ADBC,ABCD,
∴△AEG∽△CDGCFH∽△ADH,
,

,
,SCDH=2SCHF,
AG=GH=CH,
SADG=SDGH=SCDH,
ABGCDH中,

,
∴△ABG≌△CDHSAS),
SABG=SCDH,
SADG=SDGH=SCDH=SABG=2SCHF,
∴面積是FHC面積的2倍的所有三角形是ADG,DGH,CDHABG

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、BC,請回答:

1)該圓弧所在圓心D點的坐標為 ;

2)扇形DAC的圓心角度數(shù)為

3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的高.(保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,C=90°,AC=3,BC=4,點E,F分別在邊BC,AC上,沿EF所在的直線折疊∠C,使點C的對應(yīng)點D恰好落在邊AB上,若△EFC和△ABC相似,則AD的長為___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做等對角四邊形

1)已知:如圖1,四邊形ABCD是等對角四邊形,∠AC,∠A60°,∠B75°,則:∠C   °,∠D   °;

2)已知,如圖2,在平面直角坐標系xOy中,四邊形ABCD是等對角四邊形,其中A(﹣2,0),C2,0),B-1,),點Dy軸上.

①若拋物線yax2+bx+c過點A,C,D,求二次函數(shù)的解析式;

②若拋物線yax2+bx+ca0)過點AC,點P在拋物線上,當滿足∠APCADCP點至少有3個時,總有不等式2n+成立,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5BC=12,點EBC邊上一點,連接AE,將△ABE沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某旅游景點的年游客量y(萬人)是門票價格x(元)的一次函數(shù),其函數(shù)圖像如下圖.

(1)求y關(guān)于x的函數(shù)解析式;

(2)經(jīng)過景點工作人員統(tǒng)計發(fā)現(xiàn):每賣出一張門票所需成本為20元.那么要想獲得年利潤11500萬元,且門票價格不得高于230元,該年的門票價格應(yīng)該定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程x2+(m+2)x+2m-1=0.

(1)求證方程有兩個不相等的實數(shù)根.

(2)當m為何值時,方程的兩根互為相反數(shù)?并求出此時方程的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3BC=6,若點EF分別在AB,CD上,且BE=2AE,DF=2FCG,H分別是AC的三等分點,則四邊形EHFG的面積為(

A. 1B. C. 2D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,分別平分,相交于點,若,,則等于(  )

A.B.C.D.

查看答案和解析>>

同步練習冊答案