【題目】某旅游景點(diǎn)的年游客量y(萬(wàn)人)是門(mén)票價(jià)格x(元)的一次函數(shù),其函數(shù)圖像如下圖.
(1)求y關(guān)于x的函數(shù)解析式;
(2)經(jīng)過(guò)景點(diǎn)工作人員統(tǒng)計(jì)發(fā)現(xiàn):每賣(mài)出一張門(mén)票所需成本為20元.那么要想獲得年利潤(rùn)11500萬(wàn)元,且門(mén)票價(jià)格不得高于230元,該年的門(mén)票價(jià)格應(yīng)該定為多少元?
【答案】(1)y=-x+300(2)70
【解析】試題分析:
(1)設(shè)y與x的函數(shù)關(guān)系式為:y=kx+b,代入圖中兩點(diǎn)的坐標(biāo),列出方程組,解方程組求得k、b的值,即可得到所求的解析式;
(2)設(shè)門(mén)票價(jià)格定為x元,結(jié)合(1)可列出方程(x-20)(-x+300)=11500,解方程即可.
試題解析:
(1)設(shè),函數(shù)圖像過(guò)點(diǎn)(200,100), (50,250)
代入解析式得: ,解得: ,
∴y關(guān)于x的解析式為: ;
(2)設(shè)門(mén)票價(jià)格定為x元,依題意可得:
,
整理得: , 解之得:x=70或者x=250(舍去),
答:門(mén)票價(jià)格應(yīng)該定為70元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究問(wèn)題背景數(shù)學(xué)活動(dòng)課上,老師將一副三角尺按圖(1)所示位置擺放,分別作出∠AOC,∠BOD的平分線OM、ON,然后提出如下問(wèn)題:求出∠MON的度數(shù).
特例探究“興趣小組”的同學(xué)決定從特例入手探究老師提出的問(wèn)題,他們將三角尺分別按圖2、圖3所示的方式擺放,OM和ON仍然是∠AOC和∠BOD的角平分線.其中,按圖2方式擺放時(shí),可以看成是ON、OD、OB在同一直線上.按圖3方式擺放時(shí),∠AOC和∠BOD相等.
(1)請(qǐng)你幫助“興趣小組”進(jìn)行計(jì)算:圖2中∠MON的度數(shù)為 °.圖3中∠MON的度數(shù)為 °.
發(fā)現(xiàn)感悟
解決完圖2,圖3所示問(wèn)題后,“興趣小組”又對(duì)圖1所示問(wèn)題進(jìn)行了討論:
小明:由于圖1中∠AOC和∠BOD的和為90°,所以我們?nèi)菀椎玫健?/span>MOC和∠NOD的和,這樣就能求出∠MON的度數(shù).
小華:設(shè)∠BOD為x°,我們就能用含x的式子分別表示出∠NOD和∠MOC度數(shù),這樣也能求出∠MON的度數(shù).
(2)請(qǐng)你根據(jù)他們的談話內(nèi)容,求出圖1中∠MON的度數(shù).
類(lèi)比拓展
受到“興趣小組”的啟發(fā),“智慧小組”將三角尺按圖4所示方式擺放,分別作出∠AOC、∠BOD的平分線OM、ON,他們認(rèn)為也能求出∠MON的度數(shù).
(3)你同意“智慧小組”的看法嗎?若同意,求出∠MON的度數(shù);若不同意,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品的標(biāo)價(jià)為500元/件,經(jīng)過(guò)兩次降價(jià)后的價(jià)格為320元/件,并且兩次降價(jià)的百分率相同.
(1)求該種商品每次降價(jià)的百分率;
(2)若該商品進(jìn)價(jià)為280元/件,兩次降價(jià)共售此種商品100件,為使兩次降價(jià)銷(xiāo)售的總利潤(rùn)不少于8000元,則第一次降價(jià)后至少要售出這種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在四邊形ABCD中,AD//BC,對(duì)角線AC、BD交于點(diǎn)O,且AC=BD,下列四個(gè)命題中真命題是( )
A. 若AB=CD,則四邊形ABCD一定是等腰梯形;
B. 若∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;
C. 若,則四邊形ABCD一定是矩形;
D. 若AC⊥BD且AO=OD,則四邊形ABCD一定是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校要從甲乙兩名射擊運(yùn)動(dòng)員中挑選一人參加全市比賽,在選拔賽中,每人進(jìn)行了5次射擊,甲的成績(jī)(環(huán))為:9.7,10,9.6,9.8,9.9;乙的成績(jī)的平均數(shù)為9.8,方差為0.032;
(1)甲的射擊成績(jī)的平均數(shù)和方差分別是多少?
(2)據(jù)估計(jì),如果成績(jī)的平均數(shù)達(dá)到9.8環(huán)就可能奪得金牌,為了奪得金牌,應(yīng)選誰(shuí)參加比賽?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,已知AB=6,BE平分∠ABC交AD邊于點(diǎn)E,點(diǎn)E將AD分為1:3兩部分,則AD的長(zhǎng)為( 。
A. 8或24B. 8C. 24D. 9或24
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索n×n的正方形釘子板上(n是釘子板每邊上的釘子數(shù),每邊上相鄰釘子間的距離為1),連接任意兩個(gè)釘子所得到的不同長(zhǎng)度值的線段種數(shù):
當(dāng)n=2時(shí),釘子板上所連不同線段的長(zhǎng)度值只有1與,所以不同長(zhǎng)度值的線段只有2種,若用S表示不同長(zhǎng)度值的線段種數(shù),則S=2;
當(dāng)n=3時(shí),釘子板上所連不同線段的長(zhǎng)度值只有1, ,2, ,2五種,比n=2時(shí)增加了3種,即S=2+3=5.
(1)觀察圖形,填寫(xiě)下表:
釘子數(shù)(n×n) | S值 |
2×2 | 2 |
3×3 | 2+3 |
4×4 | 2+3+(____) |
5×5 | (________) |
(2)寫(xiě)出(n-1)×(n-1)和n×n的兩個(gè)釘子板上,不同長(zhǎng)度值的線段種數(shù)之間的關(guān)系;(用式子或語(yǔ)言表述均可).
(3)對(duì)n×n的釘子板,寫(xiě)出用n表示S的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:∠AOB是一個(gè)直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD、OE.
(1)如圖①,當(dāng)∠BOC=70°時(shí),求∠DOE的度數(shù);
(2)如圖②,若射線OC在∠AOB內(nèi)部繞O點(diǎn)旋轉(zhuǎn),當(dāng)∠BOC=α時(shí),求∠DOE的度數(shù).
(3)如圖③,當(dāng)射線OC在∠AOB外繞O點(diǎn)旋轉(zhuǎn)時(shí),畫(huà)出圖形,直接寫(xiě)出∠DOE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com