【題目】已知二次函數(shù)為常數(shù)).

1)求證:不論為何值,該二次函數(shù)的圖像與軸總有公共點(diǎn).

2)求證:不論為何值,該二次函數(shù)的圖像的頂點(diǎn)都在函數(shù)的圖像上.

3)已知點(diǎn)、,線(xiàn)段與函數(shù)的圖像有公共點(diǎn),則的取值范圍是__________

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3

【解析】

1)計(jì)算判別式的值得到△≥0,從而根據(jù)判別式的意義得到結(jié)論;

2)利用配方法得到二次函數(shù)y=x2-2mx+2m-1的頂點(diǎn)坐標(biāo)為(m,-m-12),然后根據(jù)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征進(jìn)行判斷;

3)先計(jì)算出拋物線(xiàn)y=-x-12與直線(xiàn)y=-1的交點(diǎn)的橫坐標(biāo),然后結(jié)合圖象得到a+20a2

1)令,則

,,

∴一元二次方程有實(shí)數(shù)根.

故不論取何值,函數(shù)軸總有公共點(diǎn).

2)∵

∴該函數(shù)的頂點(diǎn)坐標(biāo)為

代入,得

∴不論為何值,該二次函數(shù)的頂點(diǎn)坐標(biāo)都在函數(shù)上.

3)當(dāng)y=-1時(shí),y=-(x-1)2=-1,解得x1=0,x2=2,

當(dāng)a+2≥0且a≤2時(shí),線(xiàn)段AB與函數(shù)y=-(x-1)2的圖象有公共點(diǎn),

所以a的范圍為-2≤a≤2.

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圖(1)中,在中,,垂足為點(diǎn),點(diǎn)從點(diǎn)出發(fā),以的速度沿射線(xiàn)運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí),運(yùn)動(dòng)停止.過(guò)點(diǎn),垂足為點(diǎn),將線(xiàn)段繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)在射線(xiàn)上的對(duì)應(yīng)點(diǎn)為點(diǎn),連接.若的重疊部分面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為關(guān)于的函數(shù)圖象如圖(2)所示(其中,時(shí),函數(shù)解析式不同).

1)求的長(zhǎng);

2)求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

如圖,已知拋物線(xiàn)yax23x+cy軸交于點(diǎn)A0,﹣4),與x軸交于點(diǎn)B4,0),點(diǎn)P是線(xiàn)段AB下方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn).

1)求這條拋物線(xiàn)的表達(dá)式及其頂點(diǎn)的坐標(biāo);

2)當(dāng)點(diǎn)P移動(dòng)到拋物線(xiàn)的什么位置時(shí),∠PAB90°求出此時(shí)點(diǎn)P的坐標(biāo);

3)當(dāng)點(diǎn)P從點(diǎn)A出發(fā),沿線(xiàn)段AB下方的拋物線(xiàn)向終點(diǎn)B移動(dòng),在移動(dòng)中,設(shè)點(diǎn)P的橫坐標(biāo)為t,PAB的面積為S,求S關(guān)于t的函數(shù)表達(dá)式,并求t為何值時(shí)S有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以正方形ABCDAB邊為直徑作半圓O,過(guò)點(diǎn)C作直線(xiàn)切半圓于點(diǎn)E,交AD邊于點(diǎn)F,則=(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形 ABCD 中,E BC 邊中點(diǎn).

)已知:如圖,若 AE 平分BAD,AED=90°,點(diǎn) F AD 上一點(diǎn),AF=AB.求證:(1ABEAFE;(2AD=AB+CD

)已知:如圖,若 AE 平分BADDE 平分ADC,AED=120°,點(diǎn) F,G 均為 AD上的點(diǎn),AF=ABGD=CD.求證:(1GEF 為等邊三角形;(2AD=AB+ BC+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱(chēng)為格點(diǎn),如圖,的三個(gè)頂點(diǎn),均為格點(diǎn),上的點(diǎn)也為格點(diǎn),用無(wú)刻度的直尺作圖:

1)將線(xiàn)段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得到線(xiàn)段,寫(xiě)出格點(diǎn)的坐標(biāo);

2)將線(xiàn)段平移至線(xiàn)段,使點(diǎn)與點(diǎn)重合,直接寫(xiě)出格點(diǎn)的坐標(biāo);

3)畫(huà)出線(xiàn)段關(guān)于對(duì)稱(chēng)的線(xiàn)段,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,E是BC邊的中點(diǎn),點(diǎn)P在射線(xiàn)AD上,過(guò)P作PFAE于F,設(shè)PA=x。

(1)求證:PFA∽△ABE;

(2)若以P,F(xiàn),E為頂點(diǎn)的三角形也與ABE相似,試求x的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC的邊AB,AC的外側(cè)分別作等邊ABD和等邊△ACE,連接DC,BE

1)求證:DCBE;

2)若BD3,BC4 BD⊥BC于點(diǎn)B,請(qǐng)求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明研究了這樣一道幾何題:如圖1,在中,把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接.當(dāng)時(shí),請(qǐng)問(wèn)上的中線(xiàn)的數(shù)量關(guān)系是什么?以下是他的研究過(guò)程:

特例驗(yàn)證:(1)①如圖2,當(dāng)為等邊三角形時(shí),猜想的數(shù)量關(guān)系為_______;②如圖3,當(dāng)時(shí),則長(zhǎng)為________

猜想論證:(2)在圖1中,當(dāng)為任意三角形時(shí),猜想的數(shù)量關(guān)系,并給予證明.

拓展應(yīng)用:(3)如圖4,在四邊形,,,,在四邊形內(nèi)部是否存在點(diǎn),使之間滿(mǎn)足小明探究的問(wèn)題中的邊角關(guān)系?若存在,請(qǐng)畫(huà)出點(diǎn)的位置(保留作圖痕跡,不需要說(shuō)明)并直接寫(xiě)出的邊上的中線(xiàn)的長(zhǎng)度;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案