【題目】橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為格點(diǎn),如圖,的三個(gè)頂點(diǎn),,均為格點(diǎn),上的點(diǎn)也為格點(diǎn),用無刻度的直尺作圖:

1)將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得到線段,寫出格點(diǎn)的坐標(biāo);

2)將線段平移至線段,使點(diǎn)與點(diǎn)重合,直接寫出格點(diǎn)的坐標(biāo);

3)畫出線段關(guān)于對(duì)稱的線段,保留作圖痕跡.

【答案】1)作圖見解析,;(2)作圖見解析,;(3)作圖見解析

【解析】

1)根據(jù)旋轉(zhuǎn)的性質(zhì)作出線段,進(jìn)而得出點(diǎn)E的坐標(biāo);

2)根據(jù)平行的性質(zhì)作出線段CM,進(jìn)而得出點(diǎn)M的坐標(biāo);

3)取點(diǎn),連接于點(diǎn),連接即可.

解:(1)如圖,線段AE即為所求,;

2)如圖,線段CM即為所求,;

3)取點(diǎn),連接于點(diǎn),連接,則即為所求.

理由如下:

設(shè)交于點(diǎn),易證,,

四邊形為平行四邊形,

,

,

,,

,

垂直平分

線段關(guān)于對(duì)稱的線段為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園內(nèi)有一座古塔AB,在塔的北面有一棟建筑物,某日上午9時(shí)太陽光線與水平面的夾角為32°,此時(shí)塔在建筑物的墻上留下了高3米的影子CD.中午12時(shí)太陽光線與地面的夾角為45°,此時(shí)塔尖A在地面上的影子E與墻角C的距離為15米(BE、C在一條直線上),求塔AB的高度.(結(jié)果精確到0.01米)

參考數(shù)據(jù):sin32°≈0.5299,cos32°≈0.8480tan32°≈0.6249,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上一點(diǎn),連接,過于點(diǎn),過點(diǎn),其中的延長(zhǎng)線于點(diǎn)

1)求證:的切線.

2)如圖,點(diǎn)上,且滿足,連接并延長(zhǎng)交的延長(zhǎng)線于點(diǎn)

①試探究線段之間滿足的數(shù)量關(guān)系.

②若,,求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點(diǎn)A(1,4)、點(diǎn)B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)為常數(shù)).

1)求證:不論為何值,該二次函數(shù)的圖像與軸總有公共點(diǎn).

2)求證:不論為何值,該二次函數(shù)的圖像的頂點(diǎn)都在函數(shù)的圖像上.

3)已知點(diǎn)、,線段與函數(shù)的圖像有公共點(diǎn),則的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點(diǎn)E在對(duì)角線AC上,點(diǎn)F在邊CD上,連接BE、EF.若∠EFC90°+CBE,BE7EF10.則點(diǎn)DEF的距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若要在寬AD20米的城南大道兩邊安裝路燈,路燈的燈臂BC長(zhǎng)2米,且與燈柱AB120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過公路路面的中心線時(shí)照明效果最好,此時(shí),路燈的燈柱AB高應(yīng)該設(shè)計(jì)為多少米(結(jié)果保留根號(hào))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對(duì)稱軸為直線,與軸的一個(gè)交點(diǎn)在之間,其部分圖象如圖所示.則下列結(jié)論:①;②;③;④為實(shí)數(shù));⑤點(diǎn),是該拋物線上的點(diǎn),則,其中,正確結(jié)論的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對(duì)角線AC,BD相交于點(diǎn)O,AEBD于點(diǎn)E,CFBD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:

①CF=AE;②OE=OF;③圖中共有四對(duì)全等三角形;④四邊形ABCD是平行四邊形;其中正確結(jié)論的是_____________________

查看答案和解析>>

同步練習(xí)冊(cè)答案