【題目】設(shè)中學(xué)生體質(zhì)健康綜合評定成績?yōu)?/span>x分,滿分為100分,規(guī)定:85x100A級,75x85B級,60x75C級,x60D級.現(xiàn)隨機(jī)抽取某中學(xué)部分學(xué)生的綜合評定成績,整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中的信息,解答下列問題:

1)在這次調(diào)查中,一共抽取了______名學(xué)生,α=______b=

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中D級對應(yīng)的圓心角為______度;

4)若該校共有2000名學(xué)生,請你估計(jì)該校D級學(xué)生有多少名?

【答案】(1)50,24%20%;(2)圖見解析;(3)28.8;(4)160.

【解析】

(1)根據(jù)B級的人數(shù)和所占的百分比求出抽取的總?cè)藬?shù),再用A級的人數(shù)除以總數(shù)即可求出α,用C級的人數(shù)除以總數(shù)即可求出b

(2)用抽取的總?cè)藬?shù)減去A、B、D的人數(shù),求出C級的人數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;

(3)360度乘以D級所占的百分比即可求出扇形統(tǒng)計(jì)圖中D級對應(yīng)的圓心角的度數(shù);

(4)D級所占的百分比乘以該校的總?cè)藬?shù),即可得出該校D級的學(xué)生數(shù).

解:(1)在這次調(diào)查中,一共抽取的學(xué)生數(shù)是:24÷48%=50(人),

α=×100%=24%,

b=×100%=20%

(2)等級為C的人數(shù)是:50-12-24-4=10(人),

補(bǔ)圖如下:

(3)扇形統(tǒng)計(jì)圖中D級對應(yīng)的圓心角為×360°=28.8°;

(4)根據(jù)題意得:2000×=160(人),

答:該校D級學(xué)生有160人.

故答案為:(1)50,24%,20%;(2)圖見解析;(3)28.8;(4)160.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,TA切⊙O于點(diǎn)A,連結(jié)TB交⊙O于點(diǎn)C,∠BTA=40°,點(diǎn)M是圓上異于B,C的一個(gè)動(dòng)點(diǎn),則∠BMC的度數(shù)等于( )

A.50°
B.50°或130°
C.40°
D.40°或140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長都是1個(gè)單位長度,RtABC的三個(gè)頂點(diǎn)A(-2,2),B(0,5),C(0,2).

(1)ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到A1B1C,請畫出A1B1C的圖形.

(2)平移ABC,使點(diǎn)A的對應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),請畫出平移后對應(yīng)的A2B2C2的圖形.

(3)若將A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】碼頭工人每天往一艘輪船50噸貨物,裝載完畢恰好用了8天時(shí)間.
(1)輪船到達(dá)目的地后開始卸貨,平均卸貨速度v(單位:噸/天)與卸貨時(shí)間t(單位:天)之間有怎樣的函數(shù)關(guān)系?
(2)由于遇到緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸多少噸貨物?
(3)若原有碼頭工人10名,在(2)的條件下,至少需要增加多少名工人才能完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩張寬度相等的紙條疊放在一起,重疊部分構(gòu)成四邊形ABCD

1)求證:四邊形ABCD是菱形;

2)若紙條寬3cm,∠ABC=60°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點(diǎn)A2 019的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,∠B=30°,AB≠BC ,將△ABC沿AC翻折至△AB′C ,連結(jié)B ′D. 若 ,∠AB ′D=75°,則BC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表

x

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:
①ac<0; ②當(dāng)x>1時(shí),y的值隨x值的增大而減。
③當(dāng) 時(shí), ; ④3是方程ax2+(b﹣1)x+c=0的一個(gè)根.
其中正確的結(jié)論是(填正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長為_____

查看答案和解析>>

同步練習(xí)冊答案