【題目】如圖,是的直徑,點(diǎn)為上一點(diǎn),為的切線,于點(diǎn),分別交、于、兩點(diǎn).
(1)求證:;
(2)若的半徑為,,求的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)MC=.
【解析】
(1)連接OC,利用切線的性質(zhì)可知∠OCA+∠ACM=90°,結(jié)合已知OM⊥AB可得∠ACM=∠ODA=∠CDM,即可證明;
(2)易證△AOD∽△ACB,從而根據(jù)相似三角形的性質(zhì)可得,由勾股定理可求BC=,進(jìn)而求OD=,在Rt△OCM中利用列方程勾股定理即可求出MC.
解:(1)連接OC,
∵CN為⊙O的切線,
∴OC⊥CM,∠OCA+∠ACM=90°,
∵OM⊥AB,
∴∠OAC+∠ODA=90°,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠ACM=∠ODA=∠CDM,
∴MD=MC;
(2)由題意可知AB=5×2=10,AC=4,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴BC==,
∵∠AOD=∠ACB,∠A=∠A,
∴△AOD∽△ACB,
∴ 即,
可得:OD=,
設(shè)MC=MD=x,在Rt△OCM中,由勾股定理得:(x+)2=x2+52,
解得:x=,
即MC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校開(kāi)展的“好書(shū)伴我成長(zhǎng)”課外閱讀活動(dòng)中,為了解八年級(jí)學(xué)生的課外閱讀情況,隨機(jī)抽查部分學(xué)生,并對(duì)其課外閱讀量進(jìn)行統(tǒng)計(jì)分析,繪制成圖1、圖2兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)求被抽查的學(xué)生人數(shù)及課外閱讀量的平均數(shù);
(2)求扇形統(tǒng)計(jì)圖中的值;
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校八年級(jí)800名學(xué)生在本次活動(dòng)中課外閱讀量多于2本的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由7個(gè)同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( )
A. 主視圖改變,俯視圖改變 B. 左視圖改變,俯視圖改變
C. 俯視圖不變,左視圖改變 D. 主視圖不變,左視圖不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形中,點(diǎn)是邊的中點(diǎn),交于點(diǎn),交于點(diǎn),則下列結(jié)論:①;②;③;④,其中正確的答案是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點(diǎn)E,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)數(shù)學(xué)小組在課外活動(dòng)中,研究了同一坐標(biāo)系中兩個(gè)反比例函數(shù)與 在第一象限圖象的性質(zhì),經(jīng)歷了如下探究過(guò)程:
操作猜想:
(1)如圖①,當(dāng),時(shí),在軸的正方向上取一點(diǎn)作軸的平行線交于點(diǎn),交于點(diǎn).當(dāng)時(shí),________,________,________;當(dāng)時(shí),________,________,________;當(dāng)時(shí),猜想________.
數(shù)學(xué)思考:
(2)在軸的正方向上任意取點(diǎn)作軸的平行線,交于點(diǎn)、交于點(diǎn),請(qǐng)用含、的式子表示的值,并利用圖②加以證明.
推廣應(yīng)用:
(3)如圖③,若,,在軸的正方向上分別取點(diǎn)、 作軸的平行線,交于點(diǎn)、,交于點(diǎn)、,是否存在四邊形是正方形?如果存在,求的長(zhǎng)和點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測(cè)得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測(cè)得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)科學(xué)技術(shù)館有“圓與非圓”展品,涉及了“等寬曲線”的知識(shí).因?yàn)閳A的任何一對(duì)平行切線的距離總是相等的,所以圓是“等寬曲線”.除了例以外,還有一些幾何圖形也是“等寬曲線”,如勒洛只角形(圖1),它是分別以等邊三角形的征個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間畫(huà)一段圓弧.三段圓弧圍成的曲邊三角形.圖2是等寬的勒洛三角形和圓.
下列說(shuō)法中錯(cuò)誤的是( )
A.勒洛三角形是軸對(duì)稱(chēng)圖形
B.圖1中,點(diǎn)A到上任意一點(diǎn)的距離都相等
C.圖2中,勒洛三角形上任意一點(diǎn)到等邊三角形DEF的中心的距離都相等
D.圖2中,勒洛三角形的周長(zhǎng)與圓的周長(zhǎng)相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店連續(xù)一至四月銷(xiāo)售額的增長(zhǎng)率都相同,今年2月份的銷(xiāo)售額是2萬(wàn)元,4月份的銷(xiāo)售額是2.88萬(wàn)元.該商店銷(xiāo)售額每月的增長(zhǎng)率是多少?1月份的銷(xiāo)售額是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com