【題目】在某校開展的“好書伴我成長(zhǎng)”課外閱讀活動(dòng)中,為了解八年級(jí)學(xué)生的課外閱讀情況,隨機(jī)抽查部分學(xué)生,并對(duì)其課外閱讀量進(jìn)行統(tǒng)計(jì)分析,繪制成圖1、圖2兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)求被抽查的學(xué)生人數(shù)及課外閱讀量的平均數(shù);
(2)求扇形統(tǒng)計(jì)圖中的值;
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校八年級(jí)800名學(xué)生在本次活動(dòng)中課外閱讀量多于2本的人數(shù).
【答案】(1)50,3;(2)a=40;(3)576人
【解析】
(1)根據(jù)讀2本的人數(shù)與所占的百分比列式計(jì)算即可求出被調(diào)查的學(xué)生人數(shù);求出閱讀量為3本的人數(shù),再根據(jù)平均數(shù)的定義即可得解;
(2)根據(jù)各部分的百分比等于各部分的人數(shù)除以總?cè)藬?shù)的方計(jì)算求出a的值;
(3)根據(jù)(2)的計(jì)算補(bǔ)全統(tǒng)計(jì)圖即可;
(4)根據(jù)課外閱讀量多于2本的人數(shù)所占的百分比,乘以總?cè)藬?shù)800,計(jì)算即可.
(1)被抽查的學(xué)生人數(shù)為:.
∵課外閱讀量為3本的人數(shù)為:
,
∴課外閱讀量的平均數(shù)為:(本).
(2)∵,∴
(3)八年級(jí)800名學(xué)生在本次活動(dòng)中課外閱讀量多于2本的人數(shù)為:
(人)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對(duì)去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).
請(qǐng)根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小王吃了兩個(gè).用列表或畫樹狀圖的方法,求他第二個(gè)吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺(tái)為了解本地區(qū)電視節(jié)目的收視情況,對(duì)部分市民開展了“你最喜愛的電視節(jié)目”的問卷調(diào)查(每人只填寫一項(xiàng)),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖(如圖所示),根據(jù)要求回答下列問題:
(1)本次問卷調(diào)查共調(diào)查了________名觀眾;圖②中最喜愛“新聞節(jié)目”的人數(shù)占調(diào)查總?cè)藬?shù)的百分比為________;
(2)補(bǔ)全圖①中的條形統(tǒng)計(jì)圖;
(3)現(xiàn)有最喜愛“新聞節(jié)目”(記為),“體育節(jié)目”(記為),“綜藝節(jié)目”(記為),“科普節(jié)目”(記為)的觀眾各一名,電視臺(tái)要從四人中隨機(jī)抽取兩人參加聯(lián)誼活動(dòng),請(qǐng)用列表或畫樹狀圖的方法,求出恰好抽到最喜愛“”和“”兩位觀眾的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把1,1,2,3,5,8,13,21,…,這組數(shù)稱為斐波那契數(shù)列,為了進(jìn)一步研究,依次以這列數(shù)為半徑作90°圓弧 ,,,…,得到斐波那契螺旋線,然后順次連結(jié)P1P2,P2P3,P3P4,…,得到螺旋折線(如圖),已知點(diǎn)P1(0,1),P2(-1,0),P3(0,-1),則該折線上的點(diǎn)P9的坐標(biāo)為( )
A. (-6,24)B. (-6,25)C. (-5,24)D. (-5,25)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2-2x+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)A、B的坐標(biāo)分別為(-1,0),(3,0),點(diǎn)D為拋物線的頂點(diǎn),拋物線的對(duì)稱軸與直線BC相交于點(diǎn)E.
(1)求拋物線的解析式和點(diǎn)C的坐標(biāo);
(2)點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn),當(dāng)△PBC的面積最大時(shí),請(qǐng)求出P點(diǎn)的坐標(biāo)和△PBC的最大面積;
(3)點(diǎn)Q是線段BD上的一動(dòng)點(diǎn),將△DEQ沿邊EQ翻折得到△,是否存在點(diǎn)Q使得△與△BEQ的重疊部分圖形為直角三角形?若存在,請(qǐng)直接寫出BQ的長(zhǎng),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+x-2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過A,C兩點(diǎn),連接BC.
(1)求直線l的解析式;
(2)若直線x=m(m<0)與該拋物線在第三象限內(nèi)交于點(diǎn)E,與直線l交于點(diǎn)D,連接OD.當(dāng)OD⊥AC時(shí),求線段DE的長(zhǎng);
(3)取點(diǎn)G(0,-1),連接AG,在第一象限內(nèi)的拋物線上,是否存在點(diǎn)P,使∠BAP=∠BCO-∠BAG?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小麗暑期參加工廠社會(huì)實(shí)踐活動(dòng),師傅將他們工作第一周每天生產(chǎn)的合格產(chǎn)品的個(gè)數(shù)整理成如表兩組數(shù)據(jù),那么關(guān)于他們工作第一周每天生產(chǎn)的合格產(chǎn)品個(gè)數(shù),下列說法中正確的是( )
小明 | 2 | 6 | 7 | 7 | 8 |
小麗 | 2 | 3 | 4 | 8 | 8 |
A. 小明的平均數(shù)小于小麗的平均數(shù)
B. 兩人的中位數(shù)相同
C. 兩人的眾數(shù)相同
D. 小明的方差小于小麗的方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我們把一個(gè)半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標(biāo)軸的交點(diǎn),直線與“果圓”中的拋物線交于兩點(diǎn)
(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長(zhǎng);
(2)如圖,為直線下方“果圓”上一點(diǎn),連接,設(shè)與交于,的面積記為,的面積即為,求的最小值
(3)“果圓”上是否存在點(diǎn),使,如果存在,直接寫出點(diǎn)坐標(biāo),如果不存在,請(qǐng)說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點(diǎn)為上一點(diǎn),為的切線,于點(diǎn),分別交、于、兩點(diǎn).
(1)求證:;
(2)若的半徑為,,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com