【題目】如圖,BD是△ABC的角平分線,過點D作DE∥BC交AB于點E,DF∥AB交BC于點F.
⑴求證:四邊形BEDF為菱形;
⑵如果∠A=100°,∠C=30°,求∠BDE的度數(shù).
【答案】(1)證明見解析(2)25°
【解析】
(1)首先證明四邊形DEBF是平行四邊形,根據(jù)平行線的性質得到∠EDB=∠DBF,根據(jù)角平分線的性質得到∠ABD=∠DBF,等量代換得到∠ABD=∠EDB,得到DE=BE,即可證明四邊形BEDF為菱形;
⑵根據(jù)三角形的內角和求出的度數(shù),根據(jù)角平分線的性質得到的度數(shù),根據(jù)平行線的性質即可求解.
(1)∵DE∥BC,DF∥AB
∴四邊形DEBF是平行四邊形
∵DE∥BC
∴∠EDB=∠DBF
∵BD平分∠ABC
∴∠ABD=∠DBF=∠ABC
∴∠ABD=∠EDB
∴DE=BE
∴四邊形BEDF為菱形;
(2) ∠A=100°,∠C=30°,
∵BD平分∠ABC
∴∠ABD=∠DBF=∠ABC
∵DE∥BC
∴∠EDB=∠DBF= 25°.
科目:初中數(shù)學 來源: 題型:
【題目】有甲、乙兩家草莓采摘園,草莓的銷售價格相間,在生長旺季,兩家均排出優(yōu)惠方案.甲園的優(yōu)惠方案是:采摘的草莓不超過時,按原價銷售;若超過超過部分折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園需購買元門票.采摘的草莓直接按降價出售.已知在甲園、乙園采摘草莓時,所需費用相同.
在乙采摘園所需費用( 元)與草梅采摘量(千克)滿足一次函數(shù)關系,如下表:
數(shù)量/千克 | ··· | ||||
費用元 | ··· |
(1)求與的函數(shù)關系式(不必寫出的范圍);
(2)求兩個采摘園的草莓在生長旺季前的銷售價格.并求在甲采摘園所需費用(元)與草莓采摘量(千克)的函數(shù)關系式;
(3)若嘉琪準備花費元去采摘草莓,去哪個園采摘,可以得到更多數(shù)量的草莓? 說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:小明為了計算的值 ,采用以下方法:
設 ①
則 ②
②-①得
∴
(1)= ;
(2) = ;
(3)求的和( ,是正整數(shù),請寫出計算過程 ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有甲、乙兩家草莓采摘園,草莓的銷售價格相間,在生長旺季,兩家均排出優(yōu)惠方案.甲園的優(yōu)惠方案是:采摘的草莓不超過時,按原價銷售;若超過超過部分折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園需購買元門票.采摘的草莓直接按降價出售.已知在甲園、乙園采摘草莓時,所需費用相同.
在乙采摘園所需費用( 元)與草梅采摘量(千克)滿足一次函數(shù)關系,如下表:
數(shù)量/千克 | ··· | ||||
費用元 | ··· |
(1)求與的函數(shù)關系式(不必寫出的范圍);
(2)求兩個采摘園的草莓在生長旺季前的銷售價格.并求在甲采摘園所需費用(元)與草莓采摘量(千克)的函數(shù)關系式;
(3)若嘉琪準備花費元去采摘草莓,去哪個園采摘,可以得到更多數(shù)量的草莓? 說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了增強中學生的體質,某校食堂每天都為學生提供一定數(shù)量的水果,學校李老師為了了解學生喜歡吃哪種水果,進行了抽樣調查,調查分為五種類型:A喜歡吃蘋果的學生;B喜歡吃桔子的學生;C.喜歡吃梨的學生;D.喜歡吃香蕉的學生;E喜歡吃西瓜的學生,并將調查結果繪制成圖1和圖2 的統(tǒng)計圖(不完整).請根據(jù)圖中提供的數(shù)據(jù)解答下列問題:
(1)求此次抽查的學生人數(shù);
(2)將圖2補充完整,并求圖1中的;
(3)現(xiàn)有5名學生,其中A類型2名,B類型2名,從中任選2名學生參加很體能測試,求這兩名學生為同一類型的概率(用列表法或樹狀圖法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,創(chuàng)新小組要測量公園內一棵樹的高度AB,其中一名小組成員站在距離樹10米的點E處,測得樹頂A的仰角為54°.已知測角儀的架高CE=1.8米,則這顆樹的高度為_________米.(結果保留一位小數(shù).參考數(shù)據(jù):sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C、點D為⊙O上異于A、B的兩點,連接CD,過點C作CE⊥DB,交DB的延長線于點E,連接AC、AD、BC,若∠ABD=2∠BDC.
(1)求證:CE是⊙0的切線
(2)求證:△ABC△CBE
(3)若⊙O的半徑為5,tan∠BDC=,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com