【題目】下列條件中不能使兩個直角三角形全等的是( 。

A. 兩條直角邊對應(yīng)相等 B. 兩個銳角對應(yīng)相等

C. 一條直角邊和斜邊對應(yīng)相等 D. 一個銳角和斜邊對應(yīng)相等

【答案】B

【解析】選項A,可以利用邊角邊判定兩三角形全等;選項B,全等三角形的判定必須有邊的參與,三個角對應(yīng)相等不能判定兩三角形全等;選項C,根據(jù)斜邊直角邊定理判定兩三角形全等;選項D,可以利用角角邊判定兩三角形全等.故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,C90°B30°,以點A為圓心任意長為半徑畫弧,分別交AB,AC于點MN再分別以點M,N為圓心,大于MN長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長BC于點D,則下列說法中,正確的個數(shù)是( )

①AD∠BAC的平分線;②∠ADC60°DAB的中垂線上;④SDAC∶SABC1∶3.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=35°,求∠ACB的度數(shù);
②若∠ACB=150°,求∠DCE的度數(shù);
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.
(3)請你動手操作,現(xiàn)將三角尺ACD固定,三角尺BCE的CE邊與CA邊重合,繞點C順時針方向旋轉(zhuǎn),當(dāng)0°<∠ACE<180°且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙內(nèi)將△ABC水平向右平移4個單位得到△A′B′C′.

(1)補(bǔ)全△A′B′C′,利用網(wǎng)格點和直尺畫圖
(2)圖中AC與A1C1的關(guān)系是:
(3)畫出AB邊上的高線CD;
(4)畫出△ABC中AB邊上的中線CE
(5)△BCE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖①、②,解答下面各題:
(1)圖①中,∠AOB=55°,點P在∠AOB內(nèi)部,過點P作PE⊥OA,PF⊥OB,垂足分別為E、F,求∠EPF的度數(shù).
(2)圖②中,點P在∠AOB外部,過點P作PE⊥OA,PF⊥OB,垂足分別為E、F,那么∠P與∠O有什么關(guān)系?為什么?
(3)通過上面這兩道題,你能說出如果一個角的兩邊分別垂直于另一個角的兩邊,則這兩個角是什么關(guān)系?
(4)如果一個角的兩邊分別平行于另一個角的兩邊,則這兩個角是什么關(guān)系?(請畫圖說明結(jié)果,不需要過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸相交于A(﹣2,0),B(4,0),與y軸相交于點C,且拋物線經(jīng)過點(2,2).

(1)求此拋物線的解析式;

(2)在拋物線的對稱軸上找一點H,使AH+CH最小,并求出點H的坐標(biāo);

(3)在第四象限內(nèi),拋物線上是否存在點M,是的以點A、B、M為頂點的三角形與ABC相似?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)
(2)20132﹣2012×2014(簡便計算)
(3)(3a23+a2a4﹣a8÷a2
(4)(x﹣2)(3x﹣1)
(5)(x﹣1)(x+1)﹣(x+2)2
(6)(a+3b﹣2c)(a﹣3b﹣2c)
(7)(m﹣2n+1)2
(8)(2a﹣3b)2(2a+3b)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖是一塊邊長為1,周長記為P1的等邊三角形紙板,沿圖的底邊剪去一塊邊長 的等邊三角形紙板后得到圖,然后沿同一底邊依次剪去一塊更小的等邊三角形紙板(即其邊長為前一塊被剪掉等邊三角形紙板邊長的 )后,得圖,,,記第nn≥3)塊紙板的周長為Pn,則Pn-Pn-1=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶樱蚩梢郧蟪鲆恍┎灰(guī)則圖形的面積.
(1)如圖1,是將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的方法計算這個圖形的面積,你能發(fā)現(xiàn)什么結(jié)論,請寫出來.
(2)如圖2,是將兩個邊長分別為a和b的正方形拼在一起,B、C、G三點在同一直線上,連接BD和BF,若兩正方形的邊長滿足a+b=10,ab=20,你能求出陰影部分的面積嗎?

查看答案和解析>>

同步練習(xí)冊答案