【題目】如圖,在菱形中,,,點邊的中點,點邊上一動點(不與點重合),延長交射線于點,連接,

1)求證:四邊形是平行四邊形;

2)填空:

①當的值為_______時,四邊形是矩形;

②當的值為______時,四邊形是菱形.

【答案】1)見解析;(2)①3,②6

【解析】

1)根據(jù)菱形的性質得出,再利用平行線的性質以及線段中點的性質得出,即可得出答案;

2)①由∠AMD=90°,根據(jù)含30度直角三角形的性質即可得出答案;②判定AMD是等邊三角形即可得出答案.

解:(1)證明:∵四邊形是菱形,

,∴

∵點邊的中點,∴

中,

,

∴四邊形是平行四邊形;

2)①當的值為3時,四邊形是矩形.

當四邊形是矩形時,∠AMD=90°

∵∠DAM=60°,AD=AB=6

AM3

②當的值為6時,四邊形是菱形.

當四邊形是菱形時,MAMD

∵∠DAM=60°,

∴△AMD是等邊三角形,

AM=AD=6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,對角線AC,BD交于點O,AB=10,AO=6,BO=8,則下列結論中,錯誤的是(   )

A.ACBDB.四邊形ABCD是菱形

C.ACBCD.ABO≌△CDO

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每年的65日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買12臺節(jié)能新設備,現(xiàn)有甲乙兩種型號的設備可供選購,經(jīng)調查,購4臺甲比購3臺乙多用18萬元,購3臺甲比購4臺乙少用4萬元。

1)求甲乙兩種設備的單價。

2)該公司決定購買甲設備不少于5臺,購買資金不超過136萬元,你認為該公司有幾種購買方案?并直接寫出最省錢的購買方案。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)閱讀理解:如圖1,在中,若,.求邊上的中線的取值范圍.小聰同學是這樣思考的:延長,使,連結.利用全等將邊轉化到,在中利用三角形三邊關系即可求出中線的取值范圍.在這個過程中小聰同學證三角形全等用到的判定方法是__________;中線的取值范圍是__________.

2)問題解決:如圖2,在中,點的中點,點邊上,點邊上,若.求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD是平行四邊形,延長BA至點E,使AE=AB,連接CEDE、AC,CEAD交于點F

1)求證:四邊形ACDE是平行四邊形;

2)若AFC=2∠B.求證:四邊形ACDE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料,請回答下列問題.

材料一:我國古代數(shù)學家秦九韶在《數(shù)書九章》中記述了“三斜求積術”,即已知三角形的三邊長,求它的面積,用現(xiàn)代式子表示即為:①(其中為三角形的三邊長,為面積),而另一個文明古國古希臘也有求三角形面積的“海倫公式”;……②(其中

材料二:對于平方差公式:公式逆用可得:,例:

1)若已知三角形的三邊長分別為45,7,請分別運用公式①和公式②,計算該三角形的面積;

2)你能否由公式①推導出公式②?請試試,寫出推導過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象如圖,則下列敘述正確的是( )

A. abc0 B. 3ac0

C. b24ac≥0 D. 將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為yax2c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,且BA=9,AC=12,點D是斜邊BC上的一個動點,過點D分別作DEAB于點E,DFAC于點F,點G為四邊形DEAF對角線交點,則線段GF的最小值為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知任意一個三角形的三個內角的和是180°,如圖1,在ABC中,∠ABC的角平分線BO與∠ACB的角平分線CO的交點為O.

1)若∠A=70°,求∠BOC的度數(shù);

2)若∠A=α,求∠BOC的度數(shù);

3)如圖2,若BO、CO分別是∠ABC、∠ACB的三等分線,也就是∠OBC=ABC,∠OCB=ACB,∠A=α,求∠BOC的度數(shù).

查看答案和解析>>

同步練習冊答案