【題目】如圖,已知四邊形ABCD是平行四邊形,對角線AC與BD相交于點O,且對角線AC平分∠BCD,∠ACD=30°,BD=6.
(1)求證:△BCD是等邊三角形;(2)求AC的長(結果保留根號).
【答案】(1)見解析;(2)AC的長為6.
【解析】
(1)先證四邊形ABCD是菱形,得BC=CD,即已知兩邊相等,再尋找一個角為60°,即可證明△BCD是等邊三角形;
(2)先由三角函數(shù)求OC的長,即可得出AC的長.
(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,AB∥CD,∴∠DAC=∠BCA,∠BAC=∠DCA.
∵AC平分∠BCD,∴∠ACD=∠ACB,∴∠ACD=∠CAD,∴AD=CD,∴四邊形ABCD是菱形,∴BC=CD.
∵∠ACD=30°,∴∠BCD=60°,∴△BCD是等邊三角形.
(2)∵O為菱形對角線的交點,∴AC=2OC,ODBD=3,∠COD=90°.
在Rt△COD中,tan∠OCD=tan30°,∴OC,∴AC=2OC=6.
答:AC的長為6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=8,BC=6,E,F分別在邊AC,BC,若以EF為直徑作圓經過AB上某點D,則EF長的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,點P是線段AB的中點,且AB=12,現(xiàn)分別以AP,BP為邊,在AB的同側作等邊△MAP和△NBP,連結MN。
(1)請只用不含刻度的直尺在圖1中找到△MNP外接圓的圓心O,并保留作圖痕跡;
(2)若將“點P是線段AB的中點”改成“點P是線段AB上異于端點的任意一點”,其余條件不變(如圖2),請用文字寫出△MNP外接圓圓心O的位置,并求出該圓半徑的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經銷甲、乙兩種商品現(xiàn)有如下信息:信息1:甲、乙兩種商品的進貨單價之和是3元;信息2:甲商品零售單價比進貨單價多1元,乙商品零售單價比進貨單價的2倍少1元;信息3:按零售單價購買甲商品3件和乙商品2件,共付了12元.請根據(jù)以上信息,解答下列問題:
求甲、乙兩種商品的零售單價;
該商店平均每天賣出甲商品500件和乙商品1200件經調查發(fā)現(xiàn),甲種商品零售單價每降元,甲種商品每天可多銷售100件商店決定把甲種商品的零售單價下降元在不考慮其他因素的條件下,當m為多少時,商店每天銷售甲、乙兩種商品獲取的總利潤為1700元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( 。
A. 擲一枚均勻的骰子,骰子停止轉動后,5點朝上是必然事件
B. 明天下雪的概率為,表示明天有半天都在下雪
C. 甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定
D. 了解一批充電寶的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是拋物線上在x軸下方的動點,過M作MN∥y軸交直線BC于點N,求線段MN的最大值;
(3)E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小強洗漱時的側面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).
(1)此時小強頭部E點與地面DK相距多少?
(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應向前或后退多少?
(sin80°≈0.98,cos80°≈0.17, ≈1.41,結果精確到0.1cm)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小朋友蕩秋千的側面示意圖,靜止時秋千位于鉛垂線BD上,轉軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當秋千擺動到最高點A時,測得點A到BD的距離AC=2m,點A到地面的距離AE=1.8m;當他從A處擺動到A′處時,有A'B⊥AB.
(1)求A′到BD的距離;
(2)求A′到地面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com