【題目】(題文)如圖1,在四邊形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.
(1)求證:AD=DC;
(2)如圖2,在上述條件下,若∠A=∠ABC=60°,過(guò)點(diǎn)D作DE⊥AB,過(guò)點(diǎn)C作CF⊥BD,垂足分別為E、F,連接EF.判斷△DEF的形狀并證明你的結(jié)論.
【答案】(1)證明見(jiàn)解析;(2)等邊三角形,證明見(jiàn)解析
【解析】
試題(1)利用平行線(xiàn)的性質(zhì)以及角平分線(xiàn)的性質(zhì)得出對(duì)應(yīng)角關(guān)系即可得出∠CDB=∠CBD進(jìn)而得出AD=DC,
(2)利用等腰三角形的性質(zhì)得出點(diǎn)F是BD的中點(diǎn),再利用直角三角形的性質(zhì)以及等邊三角形的判定得出答案.
(1)證明:∵DC‖AB,
∴∠CDB=∠ABD,
又∵BD平分∠ABC,
∴∠CBD=∠ABD,
∴∠CDB=∠CBD,
∴BC=DC,
又∵AD=BC,
∴AD=DC;
(2)△DEF為等邊三角形,
證明:∵BC=DC(已證),CF⊥BD,
∴點(diǎn)F是BD的中點(diǎn),
∵∠DEB=90°,∴EF=DF=BF.
∵∠ABC=60°,BD平分∠ABC,∠BDE=60°,
∴△DEF為等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=kx+b分別與x軸、y軸交于A(yíng)、B兩點(diǎn),過(guò)點(diǎn)B的拋物線(xiàn)y=﹣ (x﹣2)2+m的頂點(diǎn)P在這條直線(xiàn)上,以AB為邊向下方做正方形ABCD.
(1)當(dāng)m=2時(shí),k= , b=;當(dāng)m=﹣1時(shí),k= , b=;
(2)根據(jù)(1)中的結(jié)果,用含m的代數(shù)式分別表示k與b,并證明你的結(jié)論;
(3)當(dāng)正方形ABCD的頂點(diǎn)C落在拋物線(xiàn)的對(duì)稱(chēng)軸上時(shí),求對(duì)應(yīng)的拋物線(xiàn)的函數(shù)關(guān)系式;
(4)當(dāng)正方形ABCD的頂點(diǎn)D落在拋物線(xiàn)上時(shí),直接寫(xiě)出對(duì)應(yīng)的直線(xiàn)y=kx+b的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖中的小方格都是邊長(zhǎng)為1的正方形,△ABC與△A′B′C′的頂點(diǎn)都在格點(diǎn)上.
(1)求證:△ABC∽A′B′C′;
(2)A′B′C′與△ABC是位似圖形嗎?如果是,在圖形上畫(huà)出位似中心并求出位似比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:點(diǎn) A、B 在數(shù)軸上分別表示兩個(gè)數(shù) a、b,A、B 兩點(diǎn)間的距離記為|AB|,O 表示原點(diǎn)當(dāng) A、B 兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn) A 為原點(diǎn), 如圖 1,則|AB|=|OB|=|b|=|a﹣b|;當(dāng) A、B 兩點(diǎn)都不在原點(diǎn)時(shí),
①如圖 2,若點(diǎn) A、B 都在原點(diǎn)的右邊時(shí),|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
②如圖 3,若點(diǎn) A、B 都在原點(diǎn)的左邊時(shí),|AB|=|OB|﹣|OA|=|b|﹣|a|=|﹣b﹣(﹣a)=|a﹣b|;
③如圖 4,若點(diǎn) A、B 在原點(diǎn)的兩邊時(shí),|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|. 回答下列問(wèn)題:綜上所述,數(shù)軸上 A、B 兩點(diǎn)間的距離為|AB|=|a﹣b|
(1)若數(shù)軸上的點(diǎn) A 表示的數(shù)為﹣1,點(diǎn) B 表示的數(shù)為 9,則 A、B 兩點(diǎn)間的距離為
(2)若數(shù)軸上的點(diǎn) A 表示的數(shù)為﹣1,動(dòng)點(diǎn) P 從點(diǎn) A 出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng), 點(diǎn) P 的速度是每秒 4 個(gè)單位長(zhǎng)度,t 秒后點(diǎn) P 表示的數(shù)可表示為
(3)若點(diǎn) A 表示的數(shù)﹣1,點(diǎn) B 表示的數(shù) 9,動(dòng)點(diǎn) P、Q 分別同時(shí)從 A、B 出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn) P 的速度是每秒 4 個(gè)單位長(zhǎng)度,點(diǎn) Q 的速度是每秒 2 個(gè)單位長(zhǎng)度,求:運(yùn)動(dòng)幾秒時(shí),點(diǎn) P 可以追上點(diǎn) Q?(請(qǐng)寫(xiě)出必要的求解過(guò)程)
(4)若點(diǎn) A 表示的數(shù)﹣1,點(diǎn) B 表示的數(shù) 9,動(dòng)點(diǎn) P、Q 分別同時(shí)從 A、B 出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn) P 的速度是每秒 4 個(gè)單位長(zhǎng)度,點(diǎn) Q 的速度是每秒 2 個(gè)單位長(zhǎng)度,求運(yùn)動(dòng)幾秒時(shí),P、Q 兩點(diǎn)相距 5 個(gè)單位長(zhǎng)度?(請(qǐng)寫(xiě)出必要的求解過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是△ABC的角平分線(xiàn),DE⊥AB,DF⊥BC垂足分別為E、F.
(1)求證:BE=BF;
(2)若△ABC的面積為70,AB=16,DE=5,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】測(cè)量計(jì)算是日常生活中常見(jiàn)的問(wèn)題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點(diǎn)處觀(guān)測(cè)旗桿頂點(diǎn)A的仰角為50°,觀(guān)測(cè)旗桿底部B點(diǎn)的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小強(qiáng)用8 個(gè)邊長(zhǎng)不全相等的正三角形拼成如圖所示的圖案,其中陰影部分是邊長(zhǎng)為1 cm的正三角形.試求出圖中正三角形A、正三角形B的邊長(zhǎng)分別是多少厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,∠DAB=60°,DF⊥AB于點(diǎn)E,且DF=DC,連結(jié)PC,則∠DCF的度數(shù)為度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由相同的花盆按一定的規(guī)律組成的正多邊形圖案,其中第1個(gè)圖形一共有6個(gè)花盆,第2個(gè)圖形一共有12個(gè)花盆,第3個(gè)圖形一共有20個(gè)花盆,…,則第n個(gè)圖形中花盆的個(gè)數(shù)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com