【題目】如圖,菱形ABCD中,∠DAB=60°,DF⊥AB于點(diǎn)E,且DF=DC,連結(jié)PC,則∠DCF的度數(shù)為度.

【答案】45
【解析】解:∵四邊形ABCD是菱形, ∴AD=AB,∠ADB=∠CDB= ∠ADC,AB∥DC,
∵∠DAB=60°,
∴∠ADC=120°,
∴∠ADB=∠CDB=60°,
∵AD=AB,∠DAB=60°,
∴△ADB是等邊三角形,
∴AD=BD,
∵DF⊥AB,
∴∠ADF=∠BDF=30°,
∴∠FDC=30°+60°=90°,
∵DF=DC,
∴∠DCF=∠DFC=45°,
所以答案是:45.
【考點(diǎn)精析】利用菱形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在8×8的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,已知A(2,4),B(4,2).C是第一象限內(nèi)的一個(gè)格點(diǎn),由點(diǎn)C與線段AB組成一個(gè)以AB為底,且腰長(zhǎng)為無(wú)理數(shù)的等腰三角形.C點(diǎn)的坐標(biāo)是 , △ABC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)如圖1,在四邊形ABCD中,DC∥AB,AD=BCBD平分∠ABC

1)求證:AD=DC;

2)如圖2,在上述條件下,若∠A=∠ABC=60°,過(guò)點(diǎn)DDE⊥AB,過(guò)點(diǎn)CCF⊥BD,垂足分別為EF,連接EF.判斷△DEF的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若△ABC中,∠C=90°.

(1)若a=5,b=12,則c=________

(2)若a=6,c=10,則b=_______;

(3)若a∶b=3∶4c=10,則a=_______b=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:五蓮縣新瑪特購(gòu)物中心第一次用5000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表(注:獲利=售價(jià)﹣進(jìn)價(jià))

進(jìn)價(jià)(元/件)

20

30

售價(jià)(元/件)

29

40

(1)新瑪特購(gòu)物中心將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤(rùn)?

(2)該購(gòu)物中心第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤(rùn)比第一次獲得的總利潤(rùn)多160元,求第二次乙種商品是按原價(jià)打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)在安全工作月中,進(jìn)行了“防自然災(zāi)害﹣地震知識(shí)知多少”專題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問(wèn)卷調(diào)查,問(wèn)卷調(diào)查的結(jié)果分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個(gè)等級(jí),花粉等級(jí)后的數(shù)據(jù)整理如下表:

等級(jí)

非常了解

比較了解

基本了解

不太了解

頻數(shù)

40

120

n

4

頻率

0.2

m

0.18

0.02


(1)表中m的值為 , n的值為
(2)根據(jù)表中的數(shù)據(jù),請(qǐng)你計(jì)算“非常了解”的頻率在如圖中對(duì)應(yīng)的扇形的圓心角的度數(shù),并補(bǔ)全扇形統(tǒng)計(jì)圖;
(3)若校一共有2400名學(xué)生,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)全校學(xué)生中“比較了解”的人數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀以下材料:

高斯是德國(guó)著名的大科學(xué)家,他最出名的故事就是在他10歲時(shí),小學(xué)老師出了一道算術(shù)難題:計(jì)算1+2+3+……+100=?

在其他同學(xué)還在犯難時(shí),卻很快傳來(lái)了高斯的聲音:“老師,我已經(jīng)算好了!”

老師很吃驚,高斯解釋道:因?yàn)?/span>1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像這樣的等于101的組合一共有50,所以答案很快就可以求出:101×50=5050。

根據(jù)以上的信息,請(qǐng)同學(xué)們:

(1)計(jì)算1+3+5+7+…+99的值.

(2)計(jì)算2+4+6+8+…+200的值.

(3)用含an的式子表示運(yùn)算結(jié)果:求a+2a+3a+…+na的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形OABC的邊OC=2,將過(guò)點(diǎn)B的直線y=x﹣3x軸交于點(diǎn)E.

(1)求點(diǎn)B的坐標(biāo);

(2)連結(jié)CE,求線段CE的長(zhǎng);

(3)若點(diǎn)P在線段CB上且OP=,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2 x﹣2(a≠)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).

(1)求拋物線的解析式;
(2)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求△MBC的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo);
(3)試探究:△ABC的外接圓的圓心位置,并求出圓心坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案