【題目】如圖,∠AOB=30°,M,N分別是邊OA,OB上的定點,P,Q分別是邊OB,OA上的動點,記∠OPM=α,∠OQN=β,當(dāng)MP+PQ+QN最小時,則關(guān)于α,β的數(shù)量關(guān)系正確的是( 。
A. β﹣α=60° B. β+α=210° C. β﹣2α=30° D. β+2α=240°
【答案】B
【解析】
如圖,作M關(guān)于OB的對稱點M′,N關(guān)于OA的對稱點N′,連接M′N′交OA于Q,交OB于P,則MP+PQ+QN最小易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,KD∠OQN=180°-30°-∠ONQ,∠OPM=∠NPQ=30°+∠OQP,∠OQP=∠AQN=30°+∠ONQ,由此即可解決問題.
如圖,作M關(guān)于OB的對稱點M′,N關(guān)于OA的對稱點N′,連接M′N′交OA于Q,交OB于P,則MP+PQ+QN最小,
易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,
∵∠OQN=180°-30°-∠ONQ,∠OPM=∠NPQ=30°+∠OQP,∠OQP=∠AQN=30°+∠ONQ,
∴α+β=180°-30°-∠ONQ+30°+30°+∠ONQ=210°.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的條件是( )
A. ∠B=∠C,BD=DC B. ∠ADB=∠ADC,BD=DC
C. ∠B=∠C,∠BAD=∠CAD D. BD=DC,AB=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖以正方形ABCD的B點為坐標(biāo)原點.BC所在直線為x軸,BA所在直線為y軸,建立直角坐標(biāo)系.設(shè)正方形ABCD的邊長為6,順次連接OA、OB、OC、OD的中點A1、B1、C1、D1,得到正方形A1B1C1D1,再順次連接OA1、OB1、OC1、OD1的中點得到正方形A2B2C2D2.按以上方法依次得到正方形A1B1C1D1,……AnBnCnDn,(n為不小于1的自然數(shù)),設(shè)An點的坐標(biāo)為(xn,yn),則xn+yn=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,AC=CD,∠B=∠E=90°,AC⊥CD,則不正確的結(jié)論是( )
A. ∠1=∠2 B. ∠A =∠2 C. △ABC≌△CED D. ∠A與∠D互為余角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD,OE⊥AB,過點O畫直線MN⊥CD. 若點F是直線MN上任意一點(點O除外),且∠AOC=34°.求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求證:AD平分∠BAC;
(2)直接寫出AB+AC與AE之間的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某學(xué)生在旗桿EF與實驗樓CD之間的A處,測得∠EAF=60°,然后向左移動10米到B處,測得∠EBF=30°,∠CBD=45°,tan∠CAD= .
(1)求旗桿EF的高(結(jié)果保留根號);
(2)求旗桿EF與實驗樓CD之間的水平距離DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com