【題目】已知m,n(m<n)是關(guān)于x的方程(x–a)(x–b)=2的兩根,若a<b,則下列判斷正確的是
A. a<m<b<n B. m<a<n<b
C. a<m<n<d D. m<a<b<n
【答案】D
【解析】
由于(x-a)(x-b)=2,于是將m、n看作拋物線y=(x-a)(x-b)與直線y=2的兩交點(diǎn)的橫坐標(biāo),而拋物線y=(x-a)(x-b)與x軸的兩交點(diǎn)坐標(biāo)為(a,0),(b,0),然后畫出函數(shù)圖象,再利用函數(shù)圖象即可得到a,b,m,n的大小關(guān)系.
解:∵(x-a)(x-b)=2,
∴m、n可看作拋物線y=(x-a)(x-b)與直線y=2的兩交點(diǎn)的橫坐標(biāo),
∵拋物線y=(x-a)(x-b)與x軸的兩交點(diǎn)坐標(biāo)為(a,0),(b,0),如圖,
∴m<a<b<n.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P是第一象限角平分線上的一點(diǎn),OP=,直角三角板的直角頂點(diǎn)與點(diǎn)P重合,把直角三角板繞點(diǎn)P轉(zhuǎn)動,另兩條直角邊所在直線與x軸正半軸、y軸正半軸分別交于A、B兩點(diǎn)
(1)求點(diǎn)P的坐標(biāo)
(2)若點(diǎn)A的坐標(biāo)為(0,m),點(diǎn)B的坐標(biāo)為(n,0),試判斷m、n有什么數(shù)量關(guān)系,并說明理由
(3)連接AB,△ABO的面積是否存在最大值,若存在,求出最大值,若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在第1個(gè)△A1BC中,∠B=20°,A1B=CB;在邊A1B上任取一點(diǎn)D,延長CA1到A2,使A1A2=A1D,得到第2個(gè)△A1A2D;在邊A2D上任取一點(diǎn)E,延長A1A2到A3,使A2A3=A2E,得到第3個(gè)△A2A3E,按此做法繼續(xù)下去,第2019個(gè)等腰三角形的底角度數(shù)是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EF交AB于點(diǎn)E,交AC于點(diǎn)F.若D為BC邊的中點(diǎn),M為線段EF上一個(gè)動點(diǎn),則△BDM的周長的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(c>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P為線段BM上的一個(gè)動點(diǎn),過點(diǎn)P作x軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;
(3)探索:線段BM上是否存在點(diǎn)N,使△NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場.現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:
信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】夏季空調(diào)銷售供不應(yīng)求,某空調(diào)廠接到一份緊急訂單,要求在10天內(nèi)(含10天)完成任務(wù),為提高生產(chǎn)效率,工廠加班加點(diǎn),接到任務(wù)的第一天就生產(chǎn)了空調(diào)42臺,以后每天生產(chǎn)的空調(diào)都比前一天多2臺,由于機(jī)器損耗等原因,當(dāng)日生產(chǎn)的空調(diào)數(shù)量達(dá)到50臺后,每多生產(chǎn)一臺,當(dāng)天生產(chǎn)的所有空調(diào),平均每臺成本就增加20元.
(1)設(shè)第天生產(chǎn)空調(diào)臺,直接寫出與之間的函數(shù)解析式,并寫出自變量的取值范圍.
(2)若每臺空調(diào)的成本價(jià)(日生產(chǎn)量不超過50臺時(shí))為2000元,訂購價(jià)格為每臺2920元,設(shè)第天的利潤為元,試求與之間的函數(shù)解析式,并求工廠哪一天獲得的利潤最大,最大利潤是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:大家知道是無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分。又例如:因?yàn)?/span>,即,所以的整數(shù)部分為2,小數(shù)部分為,請解答下列問題:
(1) 如果的小數(shù)部分為a,的整數(shù)部分為b,求的值;
(2)已知,其中x是整數(shù),且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩城市為了解決空氣質(zhì)量污染問題,對城市及其周邊的環(huán)境污染進(jìn)行了綜合治理.在治理的過程中,環(huán)保部門每月初對兩城市的空氣質(zhì)量進(jìn)行監(jiān)測,連續(xù)10個(gè)月的空氣污染指數(shù)如圖1所示.其中,空氣污染指數(shù)≤50時(shí),空氣質(zhì)量為優(yōu);50<空氣污染指數(shù)≤100時(shí),空氣質(zhì)量為良;100<空氣污染指數(shù)≤150時(shí),空氣質(zhì)量為輕微污染.
(1)請?zhí)顚懴卤恚?/span>
平均數(shù) | 方差 | 中位數(shù) | 空氣質(zhì)量為優(yōu)的次數(shù) | |
甲 | 80 | |||
乙 | 80 | 1060 |
(2)請回答下面問題
①從平均數(shù)和中位數(shù)來分析,甲,乙兩城市的空氣質(zhì)量.
②從平均數(shù)和方差來分析,甲,乙兩城市的空氣質(zhì)量情況.
③根據(jù)折線圖上兩城市的空氣污染指數(shù)的走勢及優(yōu)的情況來分析兩城市治理環(huán)境污染的效果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com