【題目】如圖1,四邊形ABCD為矩形,曲線L經(jīng)過點(diǎn)D.點(diǎn)Q是四邊形ABCD內(nèi)一定點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),作PM⊥AB交曲線L于點(diǎn)M,連接QM.
小東同學(xué)發(fā)現(xiàn):在點(diǎn)P由A運(yùn)動(dòng)到B的過程中,對于x1=AP的每一個(gè)確定的值,θ=∠QMP都有唯一確定的值與其對應(yīng),x1與θ的對應(yīng)關(guān)系如表所示:
x1=AP | 0 | 1 | 2 | 3 | 4 | 5 |
θ=∠QMP | α | 85° | 130° | 180° | 145° | 130° |
小蕓同學(xué)在讀書時(shí),發(fā)現(xiàn)了另外一個(gè)函數(shù):對于自變量x2在﹣2≤x2≤2范圍內(nèi)的每一個(gè)值,都有唯一確定的角度θ與之對應(yīng),x2與θ的對應(yīng)關(guān)系如圖2所示:
根據(jù)以上材料,回答問題:
(1)表格中α的值為 .
(2)如果令表格中x1所對應(yīng)的θ的值與圖2中x2所對應(yīng)的θ的值相等,可以在兩個(gè)變量x1與x2之間建立函數(shù)關(guān)系.
①在這個(gè)函數(shù)關(guān)系中,自變量是 ,因變量是 ;(分別填入x1和x2)
②請?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,并畫出這個(gè)函數(shù)的圖象;
③根據(jù)畫出的函數(shù)圖象,當(dāng)AP=3.5時(shí),x2的值約為 .
【答案】(1)50°;(2)①x1,x2;②見解析;③﹣1.87(答案不唯一).
【解析】
(1)x=0時(shí)和x=5時(shí),兩個(gè)θ角為同旁內(nèi)角,即可求解;
(2)①根據(jù)變量的定義即可求解;
②根據(jù)表格中θ的數(shù)據(jù),從圖2讀出θ對應(yīng)的x2的數(shù)據(jù)并列表,依據(jù)表格數(shù)據(jù)描圖即可;
③當(dāng)AP=3.5時(shí),即x1=3.5時(shí),從圖象讀出x2的值即可.
(1)當(dāng)x=5時(shí),θ=∠QMP=130°,當(dāng)x=0時(shí),θ=∠QMP=α,
x=0時(shí)和x=5時(shí),兩個(gè)θ角為AD∥BC時(shí)的兩個(gè)同旁內(nèi)角,故α=180°﹣130°=50°,
故答案為50°;
(2)①根據(jù)變量的定義,x1是自變量,x2是因變量;
故答案為:x1,x2;
②根據(jù)表格中θ的數(shù)據(jù),從圖2讀出θ對應(yīng)的x2的數(shù)據(jù)并列出下表:
依據(jù)上述表格數(shù)據(jù),描點(diǎn)繪出下圖:
③當(dāng)AP=3.5時(shí),即x1=3.5時(shí),從圖象看x2的值約為﹣1.87,
故答案為﹣1.87(答案不唯一).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,西安市薦福寺內(nèi)的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點(diǎn),被列入《世界遺產(chǎn)名錄》.某周末,小樂和小夏相約去小雁塔游玩,在休息時(shí),他們想利用所學(xué)知識(shí)測量小雁塔的高度,于是他們向工作人員借來測量工具由于觀測點(diǎn)與小雁塔底部間的距離不易測量,于是他們利用太陽光照射影子進(jìn)行測量,小樂先在小雁塔的影子頂端處豎直立一根長1.72米的木棒,并測得此時(shí)木棒的影長米;然后小夏在的延長線上找出一點(diǎn),使得、、三點(diǎn)在同一直線上,并測得米已知圖中所有點(diǎn)均在同一平面內(nèi),,,根據(jù)以上測量過程及數(shù)據(jù),請你幫他們求出小雁塔的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線的圖象與反比例函數(shù)的圖象交于點(diǎn).
(1)求、的值;
(2)點(diǎn)是軸上的一點(diǎn),過點(diǎn)作軸的垂線,交直線于點(diǎn),交反比例函數(shù)的圖象于點(diǎn).橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記的圖象在點(diǎn),之間的部分與線段,圍成的區(qū)域(不含邊界)為.
①當(dāng)時(shí),直接寫出區(qū)域內(nèi)的整點(diǎn)的坐標(biāo)為______;
②若區(qū)域內(nèi)恰有6個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段,過點(diǎn)的射線.在射線上截取線段,連接,點(diǎn)為的中點(diǎn),點(diǎn)為邊上一動(dòng)點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn).以點(diǎn)為旋轉(zhuǎn)中心,將逆時(shí)針旋轉(zhuǎn)得到的對應(yīng)點(diǎn)為的對應(yīng)點(diǎn)為.
(1)當(dāng)點(diǎn)與點(diǎn)重合,且點(diǎn)不是中點(diǎn)時(shí),
①據(jù)題意在圖中補(bǔ)全圖形;
②證明:以為頂點(diǎn)的四邊形是矩形.
(2)連接,若,從下列3個(gè)條件中選擇1個(gè):
①,②,③,
當(dāng)條件______(填入序號(hào))滿足時(shí),一定有,并證明這個(gè)結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于的方程有實(shí)數(shù)根.
(1)求的取值范圍;
(2)若該方程有兩個(gè)實(shí)數(shù)根,取一個(gè)的值,求此時(shí)該方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)經(jīng)過三年的新農(nóng)村建設(shè),年經(jīng)濟(jì)收入實(shí)現(xiàn)了翻兩番(即是原來的22倍).為了更好地了解該地區(qū)的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后的年經(jīng)濟(jì)收入構(gòu)成結(jié)構(gòu)如圖,則下列結(jié)論中不正確的是( 。
A.新農(nóng)村建設(shè)后,種植收入減少了
B.新農(nóng)村建設(shè)后,養(yǎng)殖收入實(shí)現(xiàn)了翻兩番
C.新農(nóng)村建設(shè)后,第三產(chǎn)業(yè)收入比新農(nóng)村建設(shè)前的年經(jīng)濟(jì)收入還多
D.新農(nóng)村建設(shè)后,第三產(chǎn)業(yè)收入與養(yǎng)殖收入之和超過了年經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,直線PQ與⊙O相切于點(diǎn)C,以OB,BC為邊作OBCD,連接AD并延長交⊙O于點(diǎn)E,交直線PQ于點(diǎn)F.
(1)求證:AF⊥CF;
(2)連接OC,BD交于點(diǎn)H,若tan∠OCB=3,⊙O的半徑是5,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l及直線l外一點(diǎn)P.如圖,
(1)在直線l上取一點(diǎn)A,連接PA;
(2)作PA的垂直平分線MN,分別交直線l,PA于點(diǎn)B,O;
(3)以O為圓心,OB長為半徑畫弧,交直線MN于另一點(diǎn)Q;
(4)作直線PQ.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是( 。
A.△OPQ≌△OABB.PQ∥AB
C.AP=BQD.若PQ=PA,則∠APQ=60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:
身高情況分組表(單位:cm)
組別 | 身高 |
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
根據(jù)圖表提供的信息,回答下列問題:
(1)樣本中,男生的身高眾數(shù)在 組,中位數(shù)在 組;
(2)樣本中,女生身高在E組的人數(shù)有 人;
(3)已知該校共有男生400人,女生380人,請估計(jì)身高在160≤x<170之間的學(xué)生約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com