【題目】如圖,直線y=2x+2與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=2.
(1)求H點的坐標及k的值;
(2)點P在y軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點坐標;
(3)點N(a,1)是反比例函數(shù)y=(x>0)圖象上的點,點Q(m,0)是x軸上的動點,當△MNQ的面積為3時,請求出所有滿足條件的m的值.
【答案】(1)k=4;(2)點P的坐標為(0,6)或(0,2+),或(0,2﹣);(3)m=7或3.
【解析】
(1)先求出OA=2,結合tan∠AHO=2可得OH的長,即可得知點M的橫坐標,代入直線解析式可得點M坐標,代入反比例解析式可得k的值;
(2)分AM=AP和AM=PM兩種情況分別求解可得;
(3)先求出點N(4,1),延長MN交x軸于點C,待定系數(shù)法求出直線MN解析式為y=-x+5.據(jù)此求得OC=5,再由S△MNQ=S△MQC-S△NQC=3知QC=2,再進一步求解可得.
(1)由y=2x+2可知A(0,2),即OA=2,
∵tan∠AHO=2,
∴OH=1,
∴H(1,0),
∵MH⊥x軸,
∴點M的橫坐標為1,
∵點M在直線y=2x+2上,
∴點M的縱坐標為4,即M(1,4),
∵點M在y=上,
∴k=1×4=4;
(2)①當AM=AP時,
∵A(0,2),M(1,4),
∴AM=,
則AP=AM=,
∴此時點P的坐標為(0,2﹣)或(0,2+);
②若AM=PM時,
設P(0,y),
則PM= ,
∴=,
解得y=2(舍)或y=6,
此時點P的坐標為(0,6),
綜上所述,點P的坐標為(0,6)或(0,2+),或(0,2﹣);
(3)∵點N(a,1)在反比例函數(shù)y=(x>0)圖象上,
∴a=4,
∴點N(4,1),
延長MN交x軸于點C,
設直線MN的解析式為y=mx+n,
則有
解得,
∴直線MN的解析式為y=﹣x+5.
∵點C是直線y=﹣x+5與x軸的交點,
∴點C的坐標為(5,0),OC=5,
∵S△MNQ=3,
∴S△MNQ=S△MQC﹣S△NQC=×QC×4﹣×QC×1=QC=3,
∴QC=2,
∵C(5,0),Q(m,0),
∴|m﹣5|=2,
∴m=7或3,
故答案為:7或3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鈍角△ABC中,AB=AC,BC=2,O是邊AB上一點,以O為圓心,OB為半徑作⊙O,交邊AB于點D,交邊BC于點E,過E作⊙O的切線交邊AC于點F.
(1)求證:EF⊥AC.
(2)連結DF,若∠ABC=30°,且DF∥BC,求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,E是AD上一點,AE=AB,過點E作射線EF,
(1)若∠DAB=60°,EF∥AB交BC于點H,請在圖1中補全圖形,并直接寫出四邊形ABHE的形狀;
(2)如圖2,若∠DAB=90°,EF與AB相交,在EF上取一點G,使得∠EGB=∠EAB,連接AG.請在圖2中補全圖形,并證明點A,E,B,G在同一個圓上;
(3)如圖3,若∠DAB=(0°<<90°),EF與AB相交,在EF上取一點G,使得∠EGB=∠EAB,連接AG.請在圖3中補全圖形(要求:尺規(guī)作圖,保留作圖痕跡),并求出線段EG、AG、BG之間的數(shù)量關系(用含的式子表示);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2﹣2mx+3m與x軸交于A、B兩點,與y軸交于點C(0,﹣3)
(1)求該拋物線的解析式;
(2)點D為該拋物線上的一點、且在第二象限內(nèi),連接AC,若∠DAB=∠ACO,求點D的坐標;
(3)若點E為線段OC上一動點,試求2AE+EC的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.
(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知正方形的邊長為a,將此正方形按照下面的方法進行剪拼:第一次,先沿正方形的對邊中點連線剪開,然后對接為一個長方形,則此長方形的周長為___;第二次,再沿長方形的對邊(長方形的寬)中點連線剪開,對接為新的長方形,如此繼續(xù)下去,第n次得到的長方形的周長為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 擲一枚均勻的骰子,骰子停止轉動后,5點朝上是必然事件
B. 明天下雪的概率為,表示明天有半天都在下雪
C. 甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定
D. 了解一批充電寶的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公園的人工湖邊上有一座假山,假山頂上有一豎起的建筑物CD,高為10米,數(shù)學小組為了測量假山的高度DE,在公園找了一水平地面,在A處測得建筑物點D(即山頂)的仰角為35°,沿水平方向前進20米到達B點,測得建筑物頂部C點的仰角為45°,求假山的高度DE.(結果精確到1米,參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com