【題目】在平行四邊形ABCD中,EAD上一點(diǎn),AE=AB,過點(diǎn)E作射線EF,

(1)若∠DAB=60°,EFABBC于點(diǎn)H,請(qǐng)?jiān)趫D1中補(bǔ)全圖形,并直接寫出四邊形ABHE的形狀;

(2)如圖2,若∠DAB=90°,EFAB相交,在EF上取一點(diǎn)G,使得∠EGB=EAB,連接AG.請(qǐng)?jiān)趫D2中補(bǔ)全圖形,并證明點(diǎn)AE,B,G在同一個(gè)圓上;

(3)如圖3,若∠DAB=(0°<<90°)EFAB相交,在EF上取一點(diǎn)G,使得∠EGB=EAB,連接AG.請(qǐng)?jiān)趫D3中補(bǔ)全圖形(要求:尺規(guī)作圖,保留作圖痕跡),并求出線段EG、AG、BG之間的數(shù)量關(guān)系(用含的式子表示);

【答案】(1)菱形;(2)證明見解析;(3)EG=2AG·sin+BG.

【解析】

(1)根據(jù)題目要求畫出示意圖,根據(jù)有一組對(duì)邊相等是平行四邊形是菱形即可判斷四邊形ABHE的形狀.

(2) 連接BE,OG,以BE的中點(diǎn)O為圓心,以OB的長(zhǎng)為半徑作圓.

根據(jù)直角三角形斜邊的中線等于斜邊的一半,得到根據(jù)等量代換得到即可證明.

(3) 首先作∠GAH=EABGE于點(diǎn)H.作AMEG于點(diǎn)M,易證得ABG≌△AEH,又由∠EAB=α,易得繼而證得結(jié)論;

(1)如圖所示:

四邊形ABHE為菱形.

(2)連接BE,OG,以BE的中點(diǎn)O為圓心,以OB的長(zhǎng)為半徑作圓.則圓O的外接圓.

點(diǎn)A,E,BG在同一個(gè)圓上;

(3)如圖,作∠GAH=EABGE于點(diǎn)H.AMEG于點(diǎn)M,

∴∠GAB=HAE.

∵點(diǎn)AE,BG在同一個(gè)圓上,

∴∠ABG=AEH.

ABGAEH中,

ABGAEH(ASA).

BG=EH,AG=AH.

∵∠GAH=EAB=α

EG=GH+BG.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)班同學(xué)分成甲、乙兩組,開展四個(gè)城市建設(shè)知識(shí)競(jìng)賽,滿分得5分,得分均為整數(shù).小馬虎根據(jù)競(jìng)賽成績(jī),繪制了如圖所示的統(tǒng)計(jì)圖.經(jīng)確認(rèn),扇形統(tǒng)計(jì)圖是正確的,條形統(tǒng)計(jì)圖也只有乙組成績(jī)統(tǒng)計(jì)有一處錯(cuò)誤:

(1)指出條形統(tǒng)計(jì)圖中存在的錯(cuò)誤,并求出正確值;

(2)若成績(jī)達(dá)到3分及以上為合格,該校九年級(jí)有800名學(xué)生,請(qǐng)估計(jì)成績(jī)未達(dá)到合格的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD⊙O的內(nèi)接四邊形,AC⊙O的直徑,DE⊥AB,垂足為E.

(1)延長(zhǎng)DE⊙O于點(diǎn)F,延長(zhǎng)DC,F(xiàn)B交于點(diǎn)P,如圖1.求證:PC=PB;

(2)過點(diǎn)BBG⊥AD,垂足為G,BGDE于點(diǎn)H,且點(diǎn)O和點(diǎn)A都在DE的左側(cè),如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,以為直徑作交邊于點(diǎn),過點(diǎn)于點(diǎn),延長(zhǎng)的延長(zhǎng)線于點(diǎn)

1)求證:的切線;

2)若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù)(x>0)的圖象相交于點(diǎn)B(m,1).

(1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;

(2)若點(diǎn)Py軸上,且△PAB為直角三角形,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于AB兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣23).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長(zhǎng)度至點(diǎn)F,連接AFBF,求△ABF的面積.

3)根據(jù)圖象,直接寫出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y2x+2y軸交于A點(diǎn),與反比例函數(shù)yx0)的圖象交于點(diǎn)M,過MMHx軸于點(diǎn)H,且tanAHO2

1)求H點(diǎn)的坐標(biāo)及k的值;

2)點(diǎn)Py軸上,使△AMP是以AM為腰的等腰三角形,請(qǐng)直接寫出所有滿足條件的P點(diǎn)坐標(biāo);

3)點(diǎn)Na1)是反比例函數(shù)yx0)圖象上的點(diǎn),點(diǎn)Qm,0)是x軸上的動(dòng)點(diǎn),當(dāng)△MNQ的面積為3時(shí),請(qǐng)求出所有滿足條件的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB8cm,BC16cm,點(diǎn)P從點(diǎn)A開始沿邊AB向點(diǎn)B2cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C4cm/s的速度移動(dòng),如果點(diǎn)PQ分別從點(diǎn)A、B同時(shí)出發(fā),經(jīng)幾秒鐘△PBQ與△ABC相似?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的弦,C為弦AB上一點(diǎn),設(shè)AC=m,BC=nmn),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過的面積為(m2n2)π,則=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案