【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C;點(diǎn)A在第一象限,點(diǎn)B的坐標(biāo)為(﹣6,n);E為x軸正半軸上一點(diǎn),且tan∠AOE=.
(1)求點(diǎn)A的坐標(biāo);
(2)求一次函數(shù)的表達(dá)式;
(3)求△AOB的面積.
【答案】(1)A(3,4);(2)y=x+2;(3)9.
【解析】
(1)過A作AH⊥x軸于點(diǎn)H,根據(jù)tan∠AOE=,設(shè)OH=3k,AH=4k,即A的坐標(biāo)為(3k,4k),代入反比例函數(shù)解析式即可求出A點(diǎn)的坐標(biāo);
(2)求出B點(diǎn)的坐標(biāo),把A、B的坐標(biāo)代入y=kx+b即可求出k、b的值,即可求出答案;
(3)求出OC,根據(jù)三角形面積公式求出即可.
解:(1)過A作AH⊥x軸于點(diǎn)H,
在Rt△AOH中,∵tan∠AOE=,
∴設(shè)OH=3k,AH=4k,
即A的坐標(biāo)為(3k,4k),其中k>0,
∵A在圖象上,
∴,
解得:k=1(負(fù)數(shù)舍去),
∴A的坐標(biāo)為(3,4);
(2)∵點(diǎn)B(﹣6,n)在的圖象上,
∴代入得:n=﹣2,
即B的坐標(biāo)為(﹣6,﹣2),
把A、B的坐標(biāo)代入y=kx+b(k≠0)得:,
解得:k=,b=2,
∴一次函數(shù)的表達(dá)式是y=x+2;
(3)在y=x+2中令y=0,則x=﹣3,
即C(﹣3,0),
所以S△AOB=S△AOC+S△BOC=×|﹣3|×4+×|﹣3|×|﹣2|=9,
即△AOB的面積是9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在AD邊上,點(diǎn)F在AD的延長(zhǎng)線上,且BE=CF.
(1)求證:四邊形EBCF是平行四邊形.
(2)若∠BEC=90°,∠ABE=30°,AB=,求ED的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三張“黑桃”撲克牌,背面完全相同將三張撲克牌背面朝上,洗勻后放在桌面上甲,乙兩人進(jìn)行摸牌游戲,甲先從中隨機(jī)抽取一張,記下數(shù)字再放回洗勻,乙再?gòu)闹须S機(jī)抽取一張.
(1)甲抽到“黑桃”,這一事件是 事件(填“不可能“,“隨機(jī)“,“必然”);
(2)利用樹狀圖或列表的方法,求甲乙兩人抽到同一張撲克牌的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請(qǐng)補(bǔ)充完整,并解決相關(guān)問題:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對(duì)應(yīng)值.
x | … | 0 | 1 | 2 | 3 | 4 | … | ||||||
y | … | 2 | 4 | 2 | m | … |
表中m的值為________________;
(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫出函數(shù)的大致圖象;
(4)結(jié)合函數(shù)圖象,請(qǐng)寫出函數(shù)的一條性質(zhì):______________________.
(5)解決問題:如果函數(shù)與直線y=a的交點(diǎn)有2個(gè),那么a的取值范圍是______________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是CD的中點(diǎn),將△BCE沿BE折疊后得到△BEF、且點(diǎn)F在矩形ABCD的內(nèi)部,將BF延長(zhǎng)交AD于點(diǎn)G.若,則=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,點(diǎn)E在邊AD上,點(diǎn)F在邊BC上,且AE=CF,作EG∥FH,分別與對(duì)角線BD交于點(diǎn)G、H,連接EH,FG.
(1)求證:△BFH≌△DEG;
(2)連接DF,若BF=DF,則四邊形EGFH是什么特殊四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點(diǎn)D,E,連結(jié)EB,交OD于點(diǎn)F.
(1)求證:OD⊥BE.
(2)若DE=,AB=6,求AE的長(zhǎng).
(3)若△CDE的面積是△OBF面積的,求線段BC與AC長(zhǎng)度之間的等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織同學(xué)到離校15千米的社會(huì)實(shí)踐基地開展活動(dòng).一部分同學(xué)騎自行車前往,另一部分同學(xué)在騎自行車的同學(xué)出發(fā)小時(shí)后,乘汽車沿相同路線行進(jìn),結(jié)果騎自行車的與乘汽車的同學(xué)同時(shí)到達(dá)目的地.已知汽車速度是自行車速度的3倍,求自行車的速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com