【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】

直接利用二次函數(shù)圖象的開口方向以及圖象與x軸的交點(diǎn),進(jìn)而分別分析得出答案.

①∵二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,且開口向下,

x=1時(shí),y=a+b+c,即二次函數(shù)的最大值為a+b+c,故①正確;

②當(dāng)x=﹣1時(shí),a﹣b+c=0,故②錯(cuò)誤;

③圖象與x軸有2個(gè)交點(diǎn),故b2﹣4ac>0,故③錯(cuò)誤;

④∵圖象的對(duì)稱軸為x=1,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),

A(3,0),

故當(dāng)y>0時(shí),﹣1<x<3,故④正確.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國是最早了解勾股定理的國家之一.下面四幅圖中,不能用來證明勾股定理的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價(jià)格購進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,E,DAE上的一點(diǎn),且,連接BD,CD

試判斷BDAC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;

如圖2,若將繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BDAC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;

如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.

試猜想BDAC的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論;

你能求出BDAC的夾角度數(shù)嗎?如果能,請(qǐng)直接寫出夾角度數(shù);如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為直徑,C為⊙O上一點(diǎn).

(1)如圖①,過點(diǎn)C作⊙O的切線,與AB的延長線相交于點(diǎn)P,若∠CAB=28°,求∠P的大。

(2)如圖②,D為弧AB上一點(diǎn),且OD經(jīng)過AC的中點(diǎn)E,連接DC并延長,與AB的延長線相交于點(diǎn)P,若∠CAB=10°,求∠P的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩種型號(hào)的機(jī)器加工同一種零件,已知A型機(jī)器比B型機(jī)器每小時(shí)多加工20個(gè)零件,A型機(jī)器加工400個(gè)零件所用時(shí)間與B型機(jī)器加工300個(gè)零件所用時(shí)間相同.A型機(jī)器每小時(shí)加工零件的個(gè)數(shù)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸于(﹣1,0)、(3,0)兩點(diǎn),以下四個(gè)結(jié)論正確的是(用序號(hào)表示)______________

(1)圖象的對(duì)稱軸是直線 x=1

(2)當(dāng)x>1時(shí),yx的增大而減小

(3)一元二次方程ax2+bx+c=0的兩個(gè)根是﹣13

(4)當(dāng)﹣1<x<3時(shí),y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解不等式

2)解不等式組:并將其解集表示在如圖所示的數(shù)軸上

3,并寫出不等式組的整數(shù)解.

查看答案和解析>>

同步練習(xí)冊(cè)答案