【題目】如圖,矩形ABCD中,AB=5,BC=8,點P在AB上,AP=1.將矩形ABCD沿CP折疊,點B落在點B'處.B'P、B′C分別與AD交于點E、F,則EF=_____.
【答案】
【解析】
過P作PG⊥CD于G,交CB′于H,根據(jù)矩形的性質(zhì)得到AD=PG=BC=8,DG=AP=1,求得CG=PB=4,根據(jù)折疊的性質(zhì)得到∠BCP=∠PCH,根據(jù)平行線的性質(zhì)得到∠HPC=∠PCB,等量代換得到∠HPC=∠PCH,求得HP=CH,設(shè)HG=x,則CH=PH=8﹣x,根據(jù)勾股定理得到CH=PH=5,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
過P作PG⊥CD于G,交CB′于H,
則四邊形ADGP和四邊形PBCG是矩形,
∴AD=PG=BC=8,DG=AP=1,
∴CG=PB=4,
∵將矩形ABCD沿CP折疊,點B落在點B'處,
∴∠BCP=∠PCH,
∵PG∥BC,
∴∠HPC=∠PCB,
∴∠HPC=∠PCH,
∴HP=CH,
設(shè)HG=x,則CH=PH=8﹣x,
∵HG2+CG2=CH2,
∴x2+42=(8﹣x)2,
∴x=3,
∴CH=PH=5,
∵HG∥DF,
∴△CHG∽△CFD,
∴,
∴,
∴CF=,DF=,
∴B′F=,
∵∠B′=∠D=90°,∠EFB′=∠DFC,
∴△B′EF∽△DCF,
∴,
∴,
∴EF=.
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵城市周邊的農(nóng)民的種菜的積極性,某公司計劃新建,兩種溫室80棟,將其售給農(nóng)民種菜.已知建1個型溫室和2個型溫室一共需要8.1萬元,兩種溫室的成本和出售價如下表:
型 | 型 | |
成本(萬元/棟) | 2.5 | |
出售價(萬元/棟) | 3.1 | 3.5 |
(1)求的值;
(2)已知新建型溫室不少于38棟不多于50棟且所建的兩種溫室可全部售出.為了減輕菜農(nóng)負擔(dān),試問采用什么方案建設(shè)溫室可使利潤最少,最少利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,直線l經(jīng)過點A,且垂直于AB,分別與AB、AC相交于點M,N.直線l從點A出發(fā),沿AB方向以1cm/s的速度向點B運動,當(dāng)直線l經(jīng)過點B時停止運動,若運動過程中△AMN的面積是y(cm2),直線l的運動時間是x(s)則y與x之間函數(shù)關(guān)系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1、圖2,在圓O中,,,將弦AB與弧AB所圍成的弓形包括邊界的陰影部分繞點B順時針旋轉(zhuǎn)度,點A的對應(yīng)點是.
點O到線段AB的距離是______;______;點O落在陰影部分包括邊界時,的取值范圍是______;
如圖3,線段B與優(yōu)弧ACB的交點是D,當(dāng)時,說明點D在AO的延長線上;
當(dāng)直線與圓O相切時,求的值并求此時點運動路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛轎車在經(jīng)過某路口的感應(yīng)線B和C處時,懸臂燈桿上的電子警察拍攝到兩張照片,兩感應(yīng)線之間距離BC為6m,在感應(yīng)線B、C兩處測得電子警察A的仰角分別為∠ABD=18°,∠ACD=14°.求電子警察安裝在懸臂燈桿上的高度AD的長.
(參考數(shù)據(jù):sin14°≈0.242,cos14°≈0.97,tan14°≈0.25,sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班老師要求每人每學(xué)期讀4~7本書,并隨機抽查了本學(xué)期學(xué)生讀課外書冊數(shù)的情況,繪制成不完整的條形圖和不完整的扇形圖,其中條形圖被墨跡遮蓋了一部分,回答下列問題:
(1)請你求出老師隨機抽查了多少名學(xué)生;
(2)已知冊數(shù)的中位數(shù)是5,
嘉嘉說:條形圖中被遮蓋的數(shù)為5
淇淇說:條形圖中被遮蓋的數(shù)為6
ⅰ你認為嘉嘉和淇淇誰說的正確,請說明原因,并把條形圖補充完整;
ⅱ在扇形圖中,“7冊”部分所對的圓心角為_______°,并把扇形圖補充完整;
(3)請直接寫出:從抽查學(xué)生中任取兩人,恰好都讀7冊書的概率為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對本校2018屆500名學(xué)生的中考體育測試情況進行調(diào)查,根據(jù)男生1000米及女生800米測試成績整理,繪制成不完整的統(tǒng)計圖(圖①,圖②),請根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)該校畢業(yè)生中男生有 人;扇形統(tǒng)計圖中 ;500名學(xué)生中中考體育測試成績的中位數(shù)是 ;
(2)補全條形統(tǒng)計圖;
(3)從500名學(xué)生中隨機抽取一名學(xué)生,這名學(xué)生該項成績在8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,點O是對角線AC的中點,過點O作AC的垂線,分別交AD、BC于點E、F,連接AF、CE.試判斷四邊形AECF的形狀,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com