【題目】為了鼓勵城市周邊的農(nóng)民的種菜的積極性,某公司計(jì)劃新建,兩種溫室80棟,將其售給農(nóng)民種菜.已知建1個(gè)型溫室和2個(gè)型溫室一共需要8.1萬元,兩種溫室的成本和出售價(jià)如下表:
型 | 型 | |
成本(萬元/棟) | 2.5 | |
出售價(jià)(萬元/棟) | 3.1 | 3.5 |
(1)求的值;
(2)已知新建型溫室不少于38棟不多于50棟且所建的兩種溫室可全部售出.為了減輕菜農(nóng)負(fù)擔(dān),試問采用什么方案建設(shè)溫室可使利潤最少,最少利潤是多少?
【答案】(1);(2)建型溫室50棟,型溫室30棟利潤最小,最少利潤是51萬元.
【解析】
(1)根據(jù)建1個(gè)型溫室和2個(gè)型溫室一共需要8.1萬元寫出等式求出a即可;
(2)設(shè)建型溫室棟,所建的、兩種溫室全部售出后利潤為萬元,寫出y與x的關(guān)系式,再根據(jù)新建型溫室不少于38棟不多于50棟,求出最小利潤即可.
解:(1)∵建1個(gè)型溫室和2個(gè)型溫室一共需要8.1萬元,
∴,
解得;
(2)設(shè)建型溫室棟,所建的、兩種溫室全部售出后利潤為萬元,
,
由題可知,
∵,
∴的值隨的增大而減小,
∴當(dāng)時(shí),y有最小值,此時(shí),
∴(棟),
∴建型溫室50棟,型溫室30棟利潤最小,最少利潤是51萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ADC=60°,CD=4cm,P為CD的中點(diǎn).
(1)在AC上找一點(diǎn)Q,使DQ+PQ的值最。ūA舢媹D痕跡,不寫畫法,不必說理);
(2)求出(1)中DQ+PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為應(yīng)對新型冠狀病毒,某藥店老板到廠家選購、兩種品牌的醫(yī)用外科口罩,品牌口罩每個(gè)進(jìn)價(jià)比品牌口罩每個(gè)進(jìn)價(jià)多0.7元,若用7200元購進(jìn)品牌的數(shù)量是用5000元購進(jìn)品牌數(shù)量的2倍.
(1)求、兩種品牌的口罩每個(gè)進(jìn)價(jià)分別為多少元?
(2)若品牌口罩每個(gè)售價(jià)為2.1元,品牌口罩每個(gè)售價(jià)為3元,藥店老板決定一次性購進(jìn)、兩種品牌口罩共8000個(gè),在這批口罩全部出售后所獲利潤不低于3000元.則最少購進(jìn)品牌口罩多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本價(jià)為20元/千克,經(jīng)市場調(diào)查,每天銷售量y(千克)與銷售單價(jià)x(元千克)之間的關(guān)系如圖所示,規(guī)定每千克售價(jià)不能低于30元,且不高于80元.
(1)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果該超市銷售這種商品每天獲得3900元的利潤,那么該商品的銷售單價(jià)為多少元?
(3)設(shè)每天的總利潤為w元,當(dāng)銷售單價(jià)定為多少元時(shí),該超市每天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線,將拋物線沿軸翻折,得到拋物線.
(1)求出拋物線的函數(shù)表達(dá)式;
(2)現(xiàn)將拋物線向左平移個(gè)單位長度,平移后得到的新拋物線的頂點(diǎn)為,與軸的交點(diǎn)從左到右依次為,;將拋物線向右也平移個(gè)單位長度,平移后得到的新拋物線的頂點(diǎn)為,與軸交點(diǎn)從左到右依次為,.在平移過程中,是否存在以點(diǎn),,,為頂點(diǎn)的四邊形是矩形的情形?若存在,請求出此時(shí)的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)E,F(xiàn)在邊BC上,BE=CF,點(diǎn)D在AF的延長線上,AD=AC.
(1)求證:△ABE≌△ACF;
(2)若∠BAE=30°,則∠ADC= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,一輛小汽車車門寬AO為1.2米,當(dāng)車門打開角度∠AOB為40°時(shí),車門是否會碰到墻?______;(填“是”或“否”)請簡述你的理由_______.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,若CD=5,以D為圓心,DC長為半徑作⊙D交CA的延長線于E,過D作DF⊥AC,垂足為F,且DF=3.
(1)求證:BC是⊙D的切線;
(2)求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=5,BC=8,點(diǎn)P在AB上,AP=1.將矩形ABCD沿CP折疊,點(diǎn)B落在點(diǎn)B'處.B'P、B′C分別與AD交于點(diǎn)E、F,則EF=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com