【題目】如圖,拋物線y=x2+bx+c經(jīng)過(guò)坐標(biāo)原點(diǎn),并與x軸交于點(diǎn)A(2,0).

(1)求此拋物線的解析式;
(2)寫(xiě)出頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸;
(3)若拋物線上有一點(diǎn)B,且SOAB=3,求點(diǎn)B的坐標(biāo).

【答案】
(1)解:把(0,0),(2,0)代入y=x2+bx+c得

,

解得 ,

∴解析式為y=x2﹣2x


(2)解:∵y=x2﹣2x=(x﹣1)2﹣1,

∴頂點(diǎn)為(1,﹣1)

對(duì)稱(chēng)軸為:直線x=1


(3)解:設(shè)點(diǎn)B的坐標(biāo)為(c,d),則

×2|d|=3,

解得d=3或d=﹣3,

∵頂點(diǎn)縱坐標(biāo)為﹣1,﹣3<﹣1 (或x2﹣2x=﹣3中,x無(wú)解)

∴d=3

∴x2﹣2x=3

解得x1=3,x2=﹣1

∴點(diǎn)B的坐標(biāo)為(3,3)或(﹣1,3)


【解析】(1)直接把(0,0),(2,0)代入y=x2+bx+c中,列方程組求b、c的值即可拋物線的解析式;
(2)將二次函數(shù)解析式寫(xiě)成頂點(diǎn)式,可求頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸;
(3)設(shè)點(diǎn)B的坐標(biāo)為(c,d),根據(jù)三角形的面積公式 求d的值,再將縱坐標(biāo)d代入拋物線解析式求c的值,即可求得B點(diǎn)坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【探究證明】某班數(shù)學(xué)課題學(xué)習(xí)小組對(duì)矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究,提出下列問(wèn)題,請(qǐng)你給出證明.
(1)某班數(shù)學(xué)課題學(xué)習(xí)小組對(duì)矩形內(nèi)兩條互相垂直的線段與矩形兩鄰邊的數(shù)量關(guān)系進(jìn)行探究,提出下列問(wèn)題,請(qǐng)你給出證明.
如圖1,矩形ABCD中,EF⊥GH,EF分別交AB,CD于點(diǎn)E,F(xiàn),GH分別交AD,BC于點(diǎn)G,H.求證: = ;

(2)【結(jié)論應(yīng)用】如圖2,在滿足(1)的條件下,又AM⊥BN,點(diǎn)M,N分別在邊BC,CD上,若 = ,則 的值為

(3)【聯(lián)系拓展】如圖3,四邊形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,點(diǎn)M,N分別在邊BC,AB上,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王老師在公園道一號(hào)購(gòu)買(mǎi)了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問(wèn)題:

1)用含x的代數(shù)式表示地面總面積

2)當(dāng)x=3時(shí),若鋪1m2地磚的平均費(fèi)用為100元, 那么王老師要將全部地面鋪地磚,總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一盛有部分水的圓柱形小水杯放入事先沒(méi)有水的大圓柱形容器內(nèi),現(xiàn)用一注水管沿大容器內(nèi)壁勻速注水(如圖所示),則小水杯內(nèi)水面的高度h(cm)與注水時(shí)間t(min)的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形AB1C1D1的邊長(zhǎng)為1,∠B1=60°;作AD2⊥B1C1于點(diǎn)D2 , 以AD2為一邊,做第二個(gè)菱形AB2C2D2 , 使∠B2=60°;作AD3⊥B2C2于點(diǎn)D3 , 以AD3為一邊做第三個(gè)菱形AB3C3D3 , 使∠B3=60°…依此類(lèi)推,這樣做的第n個(gè)菱形ABnCnDn的邊ADn的長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的證明:

如圖,FG//CD,∠1=3,∠B=50°,求∠BDE的度數(shù).

解:∵FG//CD (已知)

∴∠2=_________

又∵∠1=3

∴∠3=_________

BC//__________

∴∠B+________=180°

又∵∠B=50°

∴∠BDE=130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB與半徑為2的⊙O相切于點(diǎn)C,點(diǎn)D,E,F(xiàn)是⊙O上三個(gè)點(diǎn),EF∥AB,若EF=2 ,則∠EDC的度數(shù)為( )

A.60°
B.90°
C.30°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA、PB分別與⊙O相切于點(diǎn)A、B,點(diǎn)M在PB上,且OM∥AP,MN⊥AP,垂足為N.

(1)求證:OM=AN;
(2)若⊙O的半徑R=3,PA=9,求OM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第n(n是大于0的整數(shù))個(gè)圖形需要黑色棋子的個(gè)數(shù)是

查看答案和解析>>

同步練習(xí)冊(cè)答案