【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,經(jīng)過C作CD⊥AB于點D,CF是⊙O的切線,過點A作AE⊥CF于E,連接AC.
(1)求證:AE=AD.
(2)若AE=3,CD=4,求AB的長.
【答案】(1)證明見解析(2)
【解析】
(1)連接OC,根據(jù)垂直定義和切線性質(zhì)定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據(jù)勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.
(1)證明:連接OC,如圖所示,
∵CD⊥AB,AE⊥CF,
∴∠AEC=∠ADC=90°,
∵CF是圓O的切線,
∴CO⊥CF,即∠ECO=90°,
∴AE∥OC,
∴∠EAC=∠ACO,
∵OA=OC,
∴∠CAO=∠ACO,
∴∠EAC=∠CAO,
在△CAE和△CAD中,
,
∴△CAE≌△CAD(AAS),
∴AE=AD;
(2)解:連接CB,如圖所示,
∵△CAE≌△CAD,AE=3,
∴AD=AE=3,
∴在Rt△ACD中,AD=3,CD=4,
根據(jù)勾股定理得:AC=5,
在Rt△AEC中,cos∠EAC==,
∵AB為直徑,
∴∠ACB=90°,
∴cos∠CAB==,
∵∠EAC=∠CAB,
∴=,即AB=.
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題背景
如圖①,BC是⊙O的直徑,點A在⊙O上,AB=AC,P為上一動點(不與B,C重合),
求證:PA=PB+PC.
請你根據(jù)小明同學的思考過程完成證明過程.
(2)類比遷移
如圖②,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內(nèi)一點,AB=AC,AB⊥AC,垂足為A,求OC的最小值.
(3)拓展延伸
如圖,⊙O的半徑為3,點A,B在⊙O上,C為⊙O內(nèi)一點,AB=AC,AB⊥AC,垂足為A,則OC的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將拋物線c1: 沿x軸翻折,得到拋物線c2,如圖1所示.
(1)請直接寫出拋物線c2的表達式;
(2)現(xiàn)將拋物線c1向左平移m個單位長度,平移后得到新拋物線的頂點為M,與x軸的交點從左到右依次為A、B;將拋物線c2向右也平移m個單位長度,平移后得到新拋物線的頂點為N,與軸的交點從左到右依次為D、E.
①當B、D是線段AE的三等分點時,求m的值;
②在平移過程中,是否存在以點A、N、E、M為頂點的四邊形是矩形的情形?若存在,請求出此時m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形中,,,是的中點,連結并延長交的延長線于點.
圖中可以由________繞點________旋轉________后得到;
若,,,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉動其中一張,重合部分構成一個四邊形,則下列結論中不一定成立的是( 。
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究:
將三角形紙板如圖放置,點P是邊AB邊上一點,DF∥CE,∠PCE=∠α,∠PDF=∠β,
探究:
(1)如果α=30°,β=40°,則∠DPC=___________.
猜想:
(2)當點P在E、F兩點之間運動時,∠DPC與α、β之間有何數(shù)量關系?并說明理由;
拓展:
(3)如果點P在E、F兩點外側運動時(點P與點A、B、E、F四點不重合),上述(2)中的結論是否還成立?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小迪同學在學勾股定理時發(fā)現(xiàn)一類特殊三角形:在一個三角形中,如果一個角是另一個角的2倍,那么稱這個三角形為“倍角三角形”.
如圖1,在倍角中,,、、的對邊分別記為,,,三角形的三邊,,有什么關系呢?讓我們一起來探索……
(1)已知“倍角三角形”的一個內(nèi)角為,則這個三角形的另兩個角的度數(shù)分別為______
(2)小迪同學先從特殊的“倍角三角形”入手研究,請你結合圖2和圖3填寫下表:
三角形 | 角的已知量 | ||
圖2 | ______ | ______ | |
圖3 | ______ |
小迪同學根據(jù)上表,提出一般性猜想:在“倍角三角形”中,,那么,,三邊滿足:______;
(3)如圖1:在倍角三角形中,,、、的對邊分別記為,,,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=(),將線段BC繞點B逆時針旋轉60°得到線段BD。
(1)如圖1,直接寫出∠ABD的大小(用含的式子表示);
(2)如圖2,∠BCE=150°,∠ABE=60°,判斷△ABE的形狀并加以證明;
(3)在(2)的條件下,連結DE,若∠DEC=45°,求的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從某校參加科普知識競賽的學生試卷中,抽取一個樣本了解競賽成績的分布情況,將樣本分成、、、、五個組,繪制成如圖所示的頻數(shù)分布直方圖,圖中、、、、各小組的長方形的高的比是,且組的頻數(shù)是,請結合直方圖提供的信息,解答下列問題.
通過計算說明,樣本數(shù)據(jù)中,中位數(shù)落在哪個組?并求該小組的頻率;
估計該校在這次競賽中,成績高于分的學生人數(shù)占參賽人數(shù)的百分比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com