【題目】如圖,四邊形中,,,是的中點(diǎn),連結(jié)并延長(zhǎng)交的延長(zhǎng)線于點(diǎn).
圖中可以由________繞點(diǎn)________旋轉(zhuǎn)________后得到;
若,,,求的面積.
【答案】(1);(2)25.
【解析】
(1)由已知條件可證明△EBA≌△EFD,所以△EFD可以由△EBA繞點(diǎn)E旋轉(zhuǎn)180°后得到;
(2)由(1)可知△EBA≌△EFD,所以求△BCF的面積可轉(zhuǎn)化為求梯形ABCD的面積,根據(jù)梯形的面積公式計(jì)算即可.
(1)∵AB∥CD,∴∠ABE=∠F,∠A=∠FDE.
∵E是AD的中點(diǎn),∴AE=CE.在△EBA和△EFD中,∵,∴△EBA≌△EFD(AAS),∴△EFD可以由△EBA繞點(diǎn)E旋轉(zhuǎn)180°后得到.
故答案為:△EBA,E,180°;
(2)∵△EBA≌△EFD,∴S△BCF=S梯形ABCD===25.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=﹣x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,頂點(diǎn)為D的拋物線y=﹣x2+2mx﹣3m經(jīng)過(guò)點(diǎn)A,交x軸于另一點(diǎn)C,連接BD,AD,CD,如圖所示.
(1)直接寫出拋物線的解析式和點(diǎn)A,C,D的坐標(biāo);
(2)動(dòng)點(diǎn)P在BD上以每秒2個(gè)單位長(zhǎng)的速度由點(diǎn)B向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在CA上以每秒3個(gè)單位長(zhǎng)的速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.PQ交線段AD于點(diǎn)E.
①當(dāng)∠DPE=∠CAD時(shí),求t的值;
②過(guò)點(diǎn)E作EM⊥BD,垂足為點(diǎn)M,過(guò)點(diǎn)P作PN⊥BD交線段AB或AD于點(diǎn)N,當(dāng)PN=EM時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程有實(shí)數(shù)根.
(1)求m的值;
(2)先作的圖象關(guān)于x軸的對(duì)稱圖形,然后將所作圖形向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點(diǎn)時(shí),求的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,.
(1)如圖1,若直線與相交于,過(guò)點(diǎn)作于,連接并延長(zhǎng)至,使得,過(guò)點(diǎn)作于,證明:.
(2)如圖2,若直線與的延長(zhǎng)線相交于,過(guò)點(diǎn)作于,連接并延長(zhǎng)至,使得,過(guò)點(diǎn)作交的延長(zhǎng)線于,探究:、、之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)學(xué)生某科目期末評(píng)價(jià)成績(jī)是由完成作業(yè)、單元檢測(cè)、期末考試三項(xiàng)成績(jī)構(gòu)成的,如果期末評(píng)價(jià)成績(jī)80分以上(含80分),則評(píng)為“優(yōu)秀”.下面表中是小張和小王兩位同學(xué)的成績(jī)記錄:
完成作業(yè) | 單元測(cè)試 | 期末考試 | |
小張 | 70 | 90 | 80 |
小王 | 60 | 75 |
(1)若按三項(xiàng)成績(jī)的平均分記為期末評(píng)價(jià)成績(jī),請(qǐng)計(jì)算小張的期末評(píng)價(jià)成績(jī);
(2)若按完成作業(yè)、單元檢測(cè)、期末考試三項(xiàng)成績(jī)按的權(quán)重來(lái)確定期末評(píng)價(jià)成績(jī).
①請(qǐng)計(jì)算小張的期末評(píng)價(jià)成績(jī)?yōu)槎嗌俜郑?/span>
②小王在期末(期末成績(jī)?yōu)檎麛?shù))應(yīng)該最少考多少分才能達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),經(jīng)過(guò)C作CD⊥AB于點(diǎn)D,CF是⊙O的切線,過(guò)點(diǎn)A作AE⊥CF于E,連接AC.
(1)求證:AE=AD.
(2)若AE=3,CD=4,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,是圓直徑,是圓的切線,切點(diǎn)為,平行于弦,,的延長(zhǎng)線交于點(diǎn),若,且,的長(zhǎng)是關(guān)于的方程的兩個(gè)根
證明:是圓的切線;
求線段的長(zhǎng);
求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù),則下列說(shuō)法正確的是( )
A. 圖象的開口向下 B. 函數(shù)的最小值為
C. 圖象的對(duì)稱軸為直線 D. 當(dāng)時(shí),隨的增大而增大
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com