【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,直線軸和軸分別交于點(diǎn),,若拋物線與直線有兩個(gè)不同的交點(diǎn),其中一個(gè)交點(diǎn)在線段上(包含,兩個(gè)端點(diǎn)),另一個(gè)交點(diǎn)在線段上(包含兩個(gè)端點(diǎn)),則的取值范圍是

A. B. C. D.

【答案】C

【解析】

根據(jù)待定系數(shù)法求出直線AB解析式,求出點(diǎn)M,N的坐標(biāo),根據(jù)一次函數(shù)以及二次函數(shù)的增減性,要使拋物線與直線有兩個(gè)不同的交點(diǎn),其中一個(gè)交點(diǎn)在線段上(包含兩個(gè)端點(diǎn)),另一個(gè)交點(diǎn)在線段上(包含兩個(gè)端點(diǎn))成立,則需①、②、 、④同時(shí)成立,解不等式組即可.

設(shè)直線AB的解析式為,由題意得

解得

直線AB的解析式為,當(dāng)時(shí),;當(dāng)時(shí),.

中,當(dāng)時(shí),.

, ,,拋物線開口向上,

要使拋物線與直線AB有兩個(gè)不同的交點(diǎn),其中一個(gè)交點(diǎn)在線段AN上(包含A,N兩個(gè)端點(diǎn)),另一個(gè)交點(diǎn)在線段BM上(包含B,M兩個(gè)端點(diǎn)),需

①、②、 ④同時(shí)成立.

解①得,;②成立;解③得;解④得.

綜上,.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象與y軸的交點(diǎn)為C,與x軸正半軸的交點(diǎn)為A,且tan∠ACO=

1)求二次函數(shù)的解析式;

2P為二次函數(shù)圖象的頂點(diǎn),Q為其對(duì)稱軸上的一點(diǎn),QC平分∠PQO,求Q點(diǎn)坐標(biāo);

3)是否存在實(shí)數(shù)、),當(dāng)時(shí),y的取值范圍為?若存在,直接寫在的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形OABC的頂點(diǎn)Ax軸的負(fù)半軸上,頂點(diǎn)Cy軸上,且AB4POC上一點(diǎn),將BCP沿PB折疊,點(diǎn)C落在第三象限內(nèi)點(diǎn)Q處,BQx軸的交點(diǎn)M恰好為OA的中點(diǎn),且MQ1

1)求點(diǎn)A的坐標(biāo);

2)求折痕PB所對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FB,FC

(1)求證:四邊形ABFC是菱形;

(2)AD=6,BE=2,求四邊形ABFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某校九年級(jí)學(xué)生為災(zāi)區(qū)捐款情況抽樣調(diào)查的條形圖和扇形統(tǒng)計(jì)圖.

1)求抽樣調(diào)查的人數(shù);

2)在扇形統(tǒng)計(jì)圖中,求該樣本中捐款15元的人數(shù)所占的圓心角度數(shù);

3)若該校九年級(jí)學(xué)生有1000人,據(jù)此樣本估計(jì)九年級(jí)捐款總數(shù)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線過(guò)點(diǎn),,與軸相交于點(diǎn).

1)求拋物線的解析式;

2)在軸正半軸上存在點(diǎn),使得是等腰三角形,請(qǐng)求出點(diǎn)的坐標(biāo);

3)如圖2,點(diǎn)是直線上方拋物線上的一個(gè)動(dòng)點(diǎn).過(guò)點(diǎn)于點(diǎn),是否存在點(diǎn),使得中的某個(gè)角恰好等于2倍?若存在,請(qǐng)求出點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)一種成本為20/件的新產(chǎn)品,在201811日投放市場(chǎng),前3個(gè)月是試銷售,3個(gè)月后,正常銷售.

1)試銷售期間,該產(chǎn)品的銷售價(jià)格不低于20/件,且不能超過(guò)80/件,銷售價(jià)格(元/件)與月銷售量(萬(wàn)件)滿足函數(shù)關(guān)系式,前3個(gè)月每件產(chǎn)品的定價(jià)多少元時(shí),每月可獲得最大利潤(rùn)?最大利潤(rùn)為多少?

2)正常銷售后,該種產(chǎn)品銷售價(jià)格統(tǒng)一為/件,公司每月可銷售萬(wàn)件,從第4個(gè)月開始,每月可獲得的最大利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB2,BC3,MBC的中點(diǎn),DEAM于點(diǎn)E

1)求證:ADE∽△MAB;

2)求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,點(diǎn)A在反比例函數(shù)y=(k≠0)的圖象上,點(diǎn)Dy軸上,點(diǎn)B、點(diǎn)Cx軸上.若平行四邊形ABCD的面積為10,則k的值是( 。

A. ﹣10 B. ﹣5 C. 5 D. 10

查看答案和解析>>

同步練習(xí)冊(cè)答案