【題目】如圖,已知,點在上,與交于點.
(1)若,,求的度數(shù);
(2),,求與的周長之和.
【答案】(1);(2)與的周長之和
【解析】
(1)根據(jù)全等三角形的性質(zhì)得到∠ABC=∠DBE,計算即可;
(2)根據(jù)全等三角形的性質(zhì)得到BE=BC=4.5cm,DE=AC=6cm,根據(jù)三角形的周長公式計算.
(1)∵△ABC≌△DBE,
∴∠ABC=∠DBE,
∴∠ABC∠DBC=∠DBE∠DBC,即∠ABD=∠CBE=(160°30°)=65°;
(2)∵△ABC≌△DBE,
∴BE=BC=4.5cm,DE=AC=6cm,
∴△DCP與△BPE的周長之和=DC+DP+PC+BP+PE+BE=(DP+PE)+(BP+PC)+DC+BE=18cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,使ΔABC≌ΔADC成立的條件是( )
A.AB=AD,∠B=∠DB.AB=AD,∠ACB=ACD
C.BC=DC,∠BAC=∠DACD.AB=AD,∠BAC=∠DAC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=12cm,BC=9cm,點D為AB的中點.
(1)如果點P在線段BC上以3厘米/秒的速度由B向C點運動,同時點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,當經(jīng)過1秒時,△BPD與△CQP是否全等,請判斷并說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD≌△CPQ?
(2)若點Q以②的運動速度從點C出發(fā),點P以原來運動速度從點B同時出發(fā),都逆時針沿△ABC的三邊運動,求經(jīng)過多長時間,點P與點Q第一次在△ABC的哪條邊上會相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點E從A出發(fā),沿A→B→C方向運動,當點E到達點C時停止運動,過點E作EF⊥AE交CD于點F,設(shè)點E運動路程為x,CF=y,如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,給出下列結(jié)論:①a=3;②當CF=時,點E的運動路程為或或,則下列判斷正確的是( )
A. ①②都對 B. ①②都錯 C. ①對②錯 D. ①錯②對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D是AC上一點,E是BD上一點,∠A=∠CBD=∠DCE.
(1)求證:△ABC∽△CDE;
(2)若BD=3DE,試求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們用f(x)表示不大于x的最大整數(shù),例如:f(2.3)=2,f(4)=4,f(﹣1.5)=﹣2;用g(y)表示不小于y的最小整數(shù).例如:g(2.5)=3,g(5)=5,g(﹣3.5)=﹣3.解決下列問題:
(1)根據(jù)以上運算規(guī)律:f(﹣5.4)=______,g(4.5)=______.
(2)若f(x)=3,則x的取值范圍是_______;若g(y)=﹣2,則y的取值范圍是______.
(3)已知x,y滿足,求x,y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長是4,點E是AB邊上一動點,連接CE,過點B作BG⊥CE于點G,點P是AB邊上另一動點,則PD+PG的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com