【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

【答案】(1)拋物線的解析式為y=x2x﹣1;(2)p=﹣(t﹣2)2+當(dāng)t=2時(shí),p有最大值(3)“落點(diǎn)”的個(gè)數(shù)有4個(gè),點(diǎn)A1坐標(biāo)為(,0)或().

【解析】

試題分析:(1)把點(diǎn)B的坐標(biāo)代入直線解析式求出m的值,再把點(diǎn)C的坐標(biāo)代入直線求解即可得到n的值,然后利用待定系數(shù)法求二次函數(shù)解析式解答;(2)令y=0求出點(diǎn)A的坐標(biāo),從而得到OA、OB的長(zhǎng)度,利用勾股定理列式求出AB的長(zhǎng),然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得ABO=DEF,再解直角三角形用DE表示出EF、DF,根據(jù)矩形的周長(zhǎng)公式表示出p,利用直線和拋物線的解析式表示DE的長(zhǎng),整理即可得到P與t的關(guān)系式,再利用二次函數(shù)的最值問(wèn)題解答;(3)根據(jù)逆時(shí)針旋轉(zhuǎn)角為90°可得A1O1y軸時(shí),B1O1x軸,旋轉(zhuǎn)角是180°判斷出A1O1在x軸上,B1O1y軸,根據(jù)B1縱坐標(biāo)為1,求出B1橫坐標(biāo)即可解決問(wèn)題.

試題解析:(1)直線l:y=x+m經(jīng)過(guò)點(diǎn)B(0,﹣1),

m=﹣1,

直線l的解析式為y=x﹣1,

直線l:y=x﹣1經(jīng)過(guò)點(diǎn)C(4,n),

n=×4﹣1=2,

拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)C(4,2)和點(diǎn)B(0,﹣1),

解得,

拋物線的解析式為y=x2x﹣1;

(2)令y=0,則x﹣1=0,

解得x=,

點(diǎn)A的坐標(biāo)為(,0),

OA=,

在RtOAB中,OB=1,

AB==,

DEy軸,

∴∠ABO=DEF,

在矩形DFEG,EF=DEcosDEF=DE=DE,

DF=DEsinDEF=DE=DE,

p=2(DF+EF)=2(+)DE=DE,

點(diǎn)D的橫坐標(biāo)為t(0t4),

D(t, t2t﹣1),E(t, t﹣1),

DE=(t﹣1)﹣(t2t﹣1)=﹣t2+2t,

p=×(﹣t2+2t)=﹣t2+t,

p=﹣(t﹣2)2+,且﹣0,

當(dāng)t=2時(shí),p有最大值

(3)“落點(diǎn)”的個(gè)數(shù)有4個(gè),如圖1,圖2,圖3,圖4所示.

如圖3,圖4中,B1O1=BO=1,則x2﹣1=1,解得x=

A1O1=,

圖3中,OA1=OO1+A1O1,圖4中OA1OO1+O1A1=

點(diǎn)A1坐標(biāo)為(,0)或().

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ΔABC中,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB、AC于點(diǎn)M、N.再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于P點(diǎn),連接AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中:①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)DAB中點(diǎn)的連線垂直平分AB;④SΔDAC:SΔABC=1:3;正確的是( )

A.①③B.②④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,解答問(wèn)題

(2x﹣5)2+(3x+7)2=(5x+2)2

解:設(shè)m=2x﹣5,n=3x+7,則m+n=5x+2

則原方程可化為m2+n2=(m+n)2

所以mn=0,即(2x﹣5)(3x+7)=0

解之得,x1=,x2=﹣

請(qǐng)利用上述方法解方程(4x﹣5)2+(3x﹣2)2=(x﹣3)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

1接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為_(kāi)______°;

2請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù);

4若從對(duì)校園安全知識(shí)達(dá)到了解程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩輛汽車同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車的st的關(guān)系.

(1)L1表示哪輛汽車到甲地的距離與行駛時(shí)間的關(guān)系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關(guān)系式.

(4)2小時(shí)后,兩車相距多少千米?

(5)行駛多長(zhǎng)時(shí)間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=4,∠BAC=120°,MBC的中點(diǎn),點(diǎn)EAB邊上的動(dòng)點(diǎn),點(diǎn)F是線段BM上的動(dòng)點(diǎn),則ME+EF的最小值等于___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠ABC=30°,CD平分∠ACB


1)尺規(guī)作圖:作線段AB的垂直平分線l;
(要求:保留作圖痕跡,不寫(xiě)作法)
2)記直線lAB,CD的交點(diǎn)分別是點(diǎn)E,F.當(dāng)AC=4時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一個(gè)四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點(diǎn)B落在AD邊上的B'點(diǎn),AE是折痕。

(1)試判斷B'E與DC的位置關(guān)系并說(shuō)明理由。

(2)如果∠C=130°,求∠AEB的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開(kāi)設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球 B乒乓球C羽毛球 D足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:

(1)這次被調(diào)查的學(xué)生共有   人;

(2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;

(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)

查看答案和解析>>

同步練習(xí)冊(cè)答案