【題目】如圖,△ABC中,D是AC上一點(diǎn),E是BD上一點(diǎn),∠A=∠CBD=∠DCE.
(1)求證:△ABC∽△CDE;
(2)若BD=3DE,試求的值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)根據(jù)有兩個(gè)角對(duì)應(yīng)相等的兩個(gè)三角形相似可得△CDE∽△BDC,同理可得△BDC∽△ABC,由相似的傳遞性即可得△ABC∽△CDE;
(2)由△CDE∽△BDC,根據(jù)相似三角形的性質(zhì)可得CD2=DE×BD,再根據(jù)BD=3DE,可求得CD=DE,由(1)得:.
(1)∵∠DCE=∠DBC,∠CDE=∠CDB,
∴△CDE∽△BDC,
同理:△BDC∽△ABC,
∴△ABC∽△CDE;
(2)∵△CDE∽△BDC,
∴CD:BD=DE:DC,
∴CD2=DE×BD,
∵BD=3DE,
∴CD=DE,
由(1)得:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,
(1)求k的值;
(2)根據(jù)圖象直接寫(xiě)出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;
(3)過(guò)原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,點(diǎn)在上,與交于點(diǎn).
(1)若,,求的度數(shù);
(2),,求與的周長(zhǎng)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,﹣2),點(diǎn)B(3m,2m+1),點(diǎn)C(6,2),點(diǎn)D.
(1)線段AC的中點(diǎn)E的坐標(biāo)為_____;
(2)ABCD的對(duì)角線BD長(zhǎng)的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠B=90°,AB=2,BC=1,CD=2,AD=3,連接AC.
(1)求AC的長(zhǎng);
(2)判斷三角形ACD的形狀,并求出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC邊長(zhǎng)為10,點(diǎn)P是AB邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B不重合).直線1是經(jīng)過(guò)點(diǎn)P的一條直線,把△ABC沿直線1折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′.
(1)如圖1,當(dāng)PB=5時(shí),若點(diǎn)B′恰好在AC邊上,求AB′的長(zhǎng)度;
(2)如圖2,當(dāng)PB=8時(shí),若直線1∥AC,求BB′的長(zhǎng)度;
(3)如圖3,點(diǎn)P在AB邊上運(yùn)動(dòng)過(guò)程中,若直線1始終垂直于AC,△ACB′的面積是否變化?若變化,說(shuō)明理由;若不變化,求出面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程|x2﹣x|﹣a=0,給出下列四個(gè)結(jié)論:①存在實(shí)數(shù)a,使得方程恰有2個(gè)不同的實(shí)根; ②存在實(shí)數(shù)a,使得方程恰有3個(gè)不同的實(shí)根;③存在實(shí)數(shù)a,使得方程恰有4個(gè)不同的實(shí)根;④存在實(shí)數(shù)a,使得方程恰有6個(gè)不同的實(shí)根;其中正確的結(jié)論個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com