【題目】已知:如圖,四邊形ABCD是平行四邊形,CEBDAD的延長線于點ECE=AC

1)求證:四邊形ABCD是矩形;

2)若AB=4,AD=3,求四邊形BCED的周長.

【答案】(1)詳見解析;(2)16.

【解析】

1)根據(jù)已知條件推知四邊形BCED是平行四邊形,則對邊相等:CE=BD,依據(jù)等量代換得到對角線AC=BD,則平行四邊形ABCD是矩形;
2)通過勾股定理求得BD的長度,再利用四邊形BCED是平行四邊形列式計算即可得解.

1)證明:∵四邊形ABCD是平行四邊形,

AEBC

CEBD,

∴四邊形BCED是平行四邊形.

CE=BD

CE=AC,

AC=BD

□ABCD是矩形.

2)解:∵□ABCD是矩形,AB=4AD=3,

∴∠DAB=90°BC=AD=3,

∵四邊形BCED是平行四邊形,

∴四邊形BCED的周長為2BC+BD=2×(3+5)=16

故答案為(1)詳見解析;(216.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,△ABC△ADE均為等邊三角形,點D在邊BC上,連接CE.請?zhí)羁眨?/span>

①∠ACE的度數(shù)為   ;

線段AC、CD、CE之間的數(shù)量關(guān)系為   

(2)拓展探究

如圖2,△ABC△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,點D在邊BC上,連接CE.請判斷∠ACE的度數(shù)及線段AC、CD、CE之間的數(shù)量關(guān)系,并說明理由.

(3)解決問題

如圖3,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,ACBD交于點E,請直接寫出線段AC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ADBC于點D,BE平分ABC,若ABC=64°,AEB=70°

(1)求CAD的度數(shù);

(2)若點F為線段BC上的任意一點,當EFC為直角三角形時,求BEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1的表達式為:y=-3x+3,且直線l1x軸交于點D,直線l2經(jīng)過點A,B,直線l1,l2交于點C

1)求點D的坐標;

2)求直線l2的解析表達式;

3)求ADC的面積;

4)在直線l2上存在異于點C的另一點P,使得ADPADC的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【概念學習】規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫除方,如, 等.類比有理數(shù)乘方,我們把記作,讀作“2的圈3次方”, 記作,讀作“的圈4次方”.一般地,把≠0)記作,讀作“a的圈c次方”.

【初步探究】

1)直接寫出計算結(jié)果: =______________ =______________

(2)關(guān)于除方,下列說法錯誤的是( )

A.任何非零數(shù)的圈3次方都等于它的倒數(shù) B.對于任何正整數(shù)c, =1

C D.負數(shù)的圈奇數(shù)次方結(jié)果是負數(shù),負數(shù)的圈偶數(shù)次方結(jié)果是正數(shù)

【深入思考】

我們知道有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?

==

(1)試一試:仿照上面的算式,將下列運算結(jié)果直接寫成冪的形式.

=___________ =_____________; =____________

(2)想一想:將一個非零有理數(shù)a的圈cc≥3)次方寫成冪的形式等于___________.

3)算一算:

/span>

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=24,BC=12,點E沿BC邊從點B開始向點C以每秒2個單位長度的速度運動;點F沿CD邊從點C開始向點D以每秒4個單位長度的速度運動,如果E、F同時出發(fā),用t(0≤t≤6)秒表示運動的時間,當t為何值時,以點E、C、F為頂點的三角形與△ACD相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點EAD的中點,BE的延長線與CD的延長線交于點F

(1)求證:ABE≌△DFE

(2)試連結(jié)BD,AF,判斷四邊形ABDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,馬戲團讓獅子和公雞表演蹺蹺板節(jié)目.蹺蹺板支柱 AB的高度為12米.

1)若吊環(huán)高度為2米,支點 A為蹺蹺板 PQ的中點,獅子能否將公雞送到吊環(huán)上?為什么?

2)若吊環(huán)高度為36米,在不改變其他條件的前提下移動支柱,當支點 A移到蹺蹺板 PQ的什么位置時,獅子剛好能將公雞送到吊環(huán)上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一座拋物線型拱橋,已知橋下在正常水位AB時,水面寬8m,水位上升3m, 就達到警戒水位CD,這時水面寬4m,若洪水到來時,水位以每小時0.2m的速度上升,求水過警戒水位后幾小時淹到橋拱頂.

查看答案和解析>>

同步練習冊答案